Angiogenic and antinociceptive effects of the genotherapy construction pcDNA_VEGF165 in the conditions of chronic limb ischemia in an in vivo experiment
https://doi.org/10.29235/1561-8323-2024-68-2-138-147
Abstract
For the first time, an in vivo experiment has established a positive combined (angiogenic and antinociceptive) effect of using the domestic genetically engineered construction pcDNA_VEGF165 under conditions of simulated limb muscle ischemia. A plasmid with a gene encoding the protein VEGF165 (pcDNA_VEGF165) may be the basis for creating the first gene therapy drugs in the Republic of Belarus.
About the Authors
V. G. BogdanBelarus
Vasiliy G. Bogdan – D. Sc. (Medicine), Professor, Academician-Secretary
66, Nezavisimosti Ave., 220072, Minsk
A. S. Doronkina
Belarus
Anastasya S. Doronkina – Researcher
28, Akademicheskaya Str., 220072, Minsk
I. P. Zhavoronok
Belarus
Irina P. Zhavoronok – Ph. D. (Biology), Head of the Сenter
28, Akademicheskaya Str., 220072, Minsk
E. V. Fedorova
Belarus
Ekaterina V. Fedorova – Researcher
28, Akademicheskaya Str., 220072, Minsk
T. A. Filippovich
Belarus
Tatsiana A. Filipovich – Senior Researcher
28, Akademicheskaya Str., 220072, Minsk
S. G. Lepeshko
Belarus
Stanislav G. Lepeshko – Junior Researcher
28, Akademicheskaya Str., 220072, Minsk
S. V. Mankovskaya
Belarus
Svetlana V. Mankovskaya – Deputy Director
28, Akademicheskaya Str., 220072, Minsk
References
1. Adam D. J., Beard J. D., Cleveland Т. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet, 2005, vol. 366, no. 9501, pp. 1925–1934. https://doi.org/10.1016/s0140-6736(05)67704-5
2. Grigorieva A. I. Chronic obliterating diseases of the arteries of the lower extremities. Modern polyclinic treatment. Moskovskiy khirurgicheskiy zhurnal = Moscow Surgical Journal, 2022, special iss., pp. 43–51 (in Russian). https://doi.org/10.17238/2072-3180-2022-43-51
3. Skvortsov V. V., Sabanov A. V., Eremenko A. A. Modern aspects of diagnosis and treatment of obliterating atherosclerosis of the lower extremities. Lechaschi Vrach = Attending doctor, 2023. vol. 26, no. 6, pp. 55–60 (in Russian). https://doi.org/10.51793/os.2023.26.6.008
4. Bogdan V. G., Lepeshko S. G. Stimulation of angiogenesis in treatment of patients with chronic arterial insufficiency of the lower limbs. Voennaya meditsina = Military medicine, 2017, no. 2, pp. 117–119 (in Russian).
5. Kibbe M. R., Hirsch A. T., Mendelsohn F. O., Davies M. G., Pham H., Saucedo J., Marston W., Pyun W.-B., Min S.-K., Peterson B. G., Comerota A., Choi D., Ballard J., Bartow R. A., Losordo D. W., Sherman W., Driver V., Perin E. C. Safety and efficacy of plasmid DNA expressing two isoforms of hepatocyte growth factor in patients with critical limb ischemia. Gene Therapy, 2016, vol. 23, no. 3, pp. 306–312. https://doi.org/10.1038/gt.2015.110
6. Chervyakov Yu. V., Vlasenko O. N. Comparison of the effectiveness of gene therapy and standard conservative therapy for patients with chronic lower limb ischemia due to atherosclerosis. Vestnik khirurgii imeni I. I. Grekova = Grekov’s Bulletin of Surgery, 2018, vol. 177, no. 2, pp. 64–69 (in Russian). https://doi.org/10.24884/0042-4625-2018-177-2-64-69
7. Kitrou Р., Karnabatidis D., Brountzos E., Katsanos K., Reppas L., Spiliopoulos S. Gene-based therapies in patients with critical limb ischemia. Expert Opinion on Biological Therapy, 2017, vol. 17, no. 4, pp. 449–456. https://doi.org/10.1080/14712598.2017.1289170
8. Morishita R., Makino H., Aoki M., Hashiya N., Yamasaki K., Azuma J., Taniyama Y., Sawa Y., Kaneda Y., Ogihara T. Phase I/IIa clinical trial of therapeutic angiogenesis using hepatocyte growth factor gene transfer to treat critical limb ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, vol. 31, no. 3, pp. 713–720. https://doi.org/10.1161/atvbaha.110.219550
9. Barć P., Antkiewicz M., Śliwa B., Frączkowska K., Guziński M., Dawiskiba T., Małodobra-Mazur M., Witkiewicz W., Kupczyńska D., Strzelec B., Janczak D., Skóra J. P. Double VERF/HGF gene therapy in critical limb ischemia complicated by diabetes mellitus. Journal of Cardiovascular Translational Research, 2021, vol. 14, no. 3, pp. 409–415. https://doi.org/10.1007/s12265-020-10066-9
10. Giacca M., Zacchigna S. VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Therapy, 2012, vol. 19, no. 6, pp. 622–629. https://doi.org/10.1038/gt.2012.17
11. Mykhaylichenko V. Yu., Tsaturyan A. B., Khizriev S. M., Pilipchuk A. A., Letyuk D. V., Samarin S. A. Experience with therapeutic angiogenesis in patients with non-by passable lesion of arteries of lower extremities. Tavricheskii medikobiologicheskii vestnik = Tauric Medical-biological Newsletter, 2022, vol. 25, no. 2, pp. 55–60 (in Russian).
12. Randall L. O., Selitto J. J. A method for measurement of analgesic activity on inflamed tissue. Archives Internationales de Pharmacodynamie et de Thérapie, 1957, vol. 111, no. 4. pp. 409–419.