Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Prevalence of serine carbapenemase genes among multi-resistant strains of Klebsiella pneumoniae isolated from patients in the departments of surgery and intensive care units

https://doi.org/10.29235/1561-8323-2024-68-2-148-155

Abstract

The frequency of serine carbapenemases in phenotypically multi-drug resistant K. pneumoniae obtained from patients of surgery and intensive care units in Belarus was assessed. Beta-lactamase genes KPC, OXA-48, OXA-23, and OXA-24 were detected by PCR in 115 phenotypically multi-drug resistant K. pneumoniae. The most common carbapenemase gene was blaOXA-48 (70 %). The genes KPC and blaOXA-24 were identified in 43.6 and 39.1 % isolates, respectively. Single serine carbapenemase gene was detected in 23.5 % strains. On other strains, the molecular analysis determined double or triple carbapenemase gene combinations.

About the Authors

O. O. Yanovich
Republican Research and Practical Center for Epidemiology and Microbiology
Belarus

Olga O. Yanovich – Ph. D. (Biology), Leading Researcher

23, Filimonov Str., 220114, Minsk



L. P. Titov
Republican Research and Practical Center for Epidemiology and Microbiology
Belarus

Leonid P. Titov – Academician, D. Sc. (Medicine), Professor, Head of the Laboratory

23, Filimonov Str., 220114, Minsk



References

1. Indrajith S., Mukhopadhyay A. K., Chowdhury G., Farraj D. A. A., Alkufeidy R. M., Natesan S., Meghanathan V., Gopal S., Muthupandian S. Molecular insights of carbapenem resistance Klebsiella pneumoniae isolates with focus on multidrug resistance from clinical samples. Journal of Infection and Public Health, 2021, vol. 14, no. 1, pp. 131–138. https://doi.org/10.1016/j.jiph.2020.09.018

2. Mmatli M., Mbelle N. M., Maningi N. E., Sekyere J. O. Emerging transcriptional and genomic mechanisms mediating carbapenem and polymyxin resistance in Enterobacteriaceae: a systematic review of current reports. mSystems, 2020, vol. 5, no. 6, art. e00783-20. https://doi.org/10.1128/msystems.00783-20

3. Pitout J. D. D., Peirano G., Kock M. M., Strydom K. A., Matsumura Y. The global ascendency of OXA-48-type carbapenemases. Clinical Microbiology Reviews, 2019, vol. 33, no. 1, art. e.00102-19. https://doi.org/10.1128/cmr.00102-19

4. Evans B. A., Amyes S. G. OXA β-lactamases. Clinical Microbiology Reviews, 2014, vol. 27, no. 2, pp. 241–263. https://doi.org/10.1128/cmr.00117-13

5. Chang D., Sharma L., Dela Cruz C. S., Zhang D. Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection. Frontiers in Microbiology, 2021, vol. 12, art. 750662. https://doi.org/10.3389/fmicb.2021.750662

6. David S., Reuter S., Harris S. R., Glasner C., Feltwell T., Argimon S., Abudahab K. [et al.]. Epidemic of carbapenemresistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nature Microbiology, 2019, vol. 4, no. 11, pp. 1919–1929. https://doi.org/10.1038/s41564-019-0492-8

7. Navon-Venezia S., Kondratyeva K., Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiology Reviews, 2017, vol. 41, no. 3, pp. 252–275. https://doi.org/10.1093/femsre/fux013

8. Yigit H., Queenan A. M., Anderson G. J., Domenech-Sanchez A., Biddle J. W., Steward C. D., Alberti S., Bush K., Tenover F. C. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 2001, vol. 45, no. 4, pp. 1151–1161. https://doi.org/10.1128/aac.45.4.1151-1161.2001

9. Grundmann H., Glasner C., Albiger B., Aanensen D. M., Tomlinson C. T., Andrasević A. T., Cantón R. [et al.]. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. The Lancet Infectious diseases, 2017, vol. 17, no. 2, pp. 153–163. https://doi.org/10.1016/s1473-3099(16)30257-2

10. Poirel L., Héritier C., Tolün V., Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 2004, vol. 48, no. 1, pp. 15–22. https://doi.org/10.1128/aac.48.1.15-22.2004

11. Mairi A., Pantel A., Sotto A., Lavigne J. P., Touati A. OXA-48-like carbapenemases producing Enterobacteriaceae in different niches. European Journal of Clinical Microbiology & Infectious Diseases, 2018, vol. 37, pp. 587–604. https://doi.org/10.1007/s10096-017-3112-7

12. El-Badawy M. F., El-Far S. W., Althobaiti S. S., Abou-Elazm F. I., Shohayeb M. M. The first egyptian report showing the co-existence of blaNDM-25, blaOXA-23, blaOXA-181, and blaGES-1 among carbapenem-resistant K. pneumoniae clinical isolates genotyped by BOX-PCR. Infection and Drug Resistance, 2020, vol. 13, pp. 1237–1250. https://doi.org/10.2147/idr.s244064

13. Рourbaghi E., Doust R. H., Rahbar M., Farzami M. R. Investigation of OXA-23, OXA-24, OXA-40, OXA-51, and OXA-58 genes in carbapenem-resistant Escherichia coli and Klebsiella pneumoniae isolates from patients with urinary tract infections. Jundishapur Journal of Microbiology, 2022, vol. 15, no. 2, art. 119480. https://doi.org/10.5812/jjm-119480

14. Chen T. L., Lee Y. T., Kuo S. C., Hsueh P. R., Chang F. Y., Siu L. K., Ko W. C., Fung C. P. Emergence and Distribution of Plasmids Bearing the blaOXA-51-like gene with an upstream ISAba1 in carbapenem-resistant Acinetobacter baumannii isolates in Taiwan. Antimicrobial Agents and Chemotherapy, 2010, vol. 54, no. 11, pp. 4575–4581. https://doi.org/10.1128/aac.00764-10


Review

Views: 82


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)