Preview

Доклады Национальной академии наук Беларуси

Пашыраны пошук

Механохимическая структурная наноинженерия гетерооксидных фотокатализаторов TiO2/ V2O5, обеспечивающих аккумулирование фотоиндуцированного заряда

https://doi.org/10.29235/1561-8323-2024-68-3-207-213

Анатацыя

Предложен механохимический метод получения композитных фотокатализаторов TiO2/V2O5 тубулярной морфологии, базирующийся на использовании локализованного механического воздействия на смесь дисперсных оксидов. Показано, что поликонденсационное связывание наночастиц гидратированного диоксида титана в условиях действия контактной нагрузки 25–39 МПа приводит к образованию тубулярного TiO2. В случае механохимического воздействия на смесь оксидов титана и ванадия образование тубулярного TiO2 сочетается с диспергированием оксида ванадия и его расщеплением на отдельные ламели. Результатом такой механохимической активации является формирование наногетеропереходов TiO2/V2O5, обеспечивающих эффективное разделение фотогенерированных зарядов и их накопление за счет редокс-превращений в фазе V2O5. В случае композиционных фотокатализаторов TiO2/V2O5 использование механохимического синтеза обеспечивает 2,5-кратное увеличение наведенной окислительной активности, являющейся результатом предварительного экспонирования.

Аб аўтарах

В. Щербакова
Институт тепло- и массообмена им. А. В. Лыкова НАН Беларуси
Беларусь


Т. Свиридова
Белорусский государственный университет
Беларусь


Д. Свиридов
Белорусский государственный университет
Беларусь


В. Агабеков
Институт химии новых материалов НАН Беларуси
Беларусь


Спіс літаратуры

1. Fujishima, A. Titanium dioxide photocatalysis / A. Fujishima, T. N. Rao, D. A. Tryk // J. Photochem. Photobiol. C: Photochemistry Reviews. – 2000. – Vol. 1, N 1. – P. 1–21. https://doi.org/10.1016/s1389-5567(00)00002-2

2. Bactericidal mode of titanium dioxide photocatalysis / Z. Huang [et al.] // J. Photochem. Phtobiol. A: Chemistry. – 2000. – Vol. 130, N 2–3. – P. 163–170. https://doi.org/10.1016/s1010-6030(99)00205-1

3. Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2 : In2O3 nanocomposite / E. V. Skorb [et al.] // Appl. Catal. B: Environmental. – 2008. – Vol. 84, N 1–2. – P. 94–99. https://doi.org/10.1016/j.apcatb.2008.03.007

4. Reversible electron storage in an all-vanadium photoelectrochemical storage cell: Synergy between vanadium redox and hybrid Photocatalyst / D. Liu [et al.] // ACS Catal. – 2015. – Vol. 5, N 4. – P. 2632–2639. https://doi.org/10.1021/cs502024k

5. Nanoengineered thin-film TiO2/h–MoO3 photocatalysts capable to accumulate photoinduced charge / T. V. Sviridova [et al.] // J. Photochem. Photobiol. A: Chemistry. – 2016. – Vol. 327. – P. 44–50. https://doi.org/10.1016/j.jphotochem.2016.04.018

6. Photoaccumulating TiO2–MoO3, TiO2–V2O5, and TiO2–WO3 heterostructures for self-sterilizing systems with the prolonged bactericidal activity / T. V. Sviridova [et al.] // Catal. Lett. – 2019. – Vol. 149. – P. 1147–1153. https://doi.org/10.1007/s10562-019-02706-w

7. Строение и фотокаталитические свойства нанокомпозитов TiO2/MoO3 и TiO2/V2O5, полученных методом механохимической активации / А. И. Кокорин [и др.] // Химическая физика. – 2018. – Т. 37, № 4. – С. 100–106. https://doi.org/10.7868/s0207401x1804012x

8. Friščić, T. Mechanochemistry for synthesis / T. Friščić, C. Mottillo, H. M. Titi // Angew. Chem. – 2020. – Vol. 59, N 3. – P. 1018–1029. https://doi.org/10.1002/anie.201906755

9. Photocatalytic activity of TiO2:In2O3 nanocomposite films towards the degradation of arylmethane and azo dyes / E. V. Skorb [et al.] // J. Photochem. Photobiol. A: Chemistry. – 2008. – Vol. 193, N 2–3. – P. 97–102. https://doi.org/10.1016/j.jphotochem.2007.06.012

10. Sviridova, T. V. Nano- and microcrystals of molybdenum trioxide and metal-matrix composites on their basis / T. V. Sviridova, L. I. Stepanova, D. V. Sviridov // Molybdenum: Characteristics, Production and Applications / ed.: M. Ortiz [et al.]. – New York, USA, 2012. – P. 147–179.

11. Wedland, W. Reflectance Spectroscopy / W. Wedland, H. G. Hecht. – New York, 1966. – 298 p.

12. TiO2 Nanotubes – annealing effects on detailed morphology and structure / S. P. Albu [et al.] // Eur. J. Inorg. Chem. – 2010. – Vol. 2010, N 27. – P. 4351–4356. https://doi.org/10.1002/ejic.201000608

13. Formation of titanium oxide nanotube / T. Kasuga [et al.] // Langmuir. – 1998. – Vol. 14, N 12. – P. 3160–3163. https://doi.org/10.1021/la9713816

14. Mohamed, M. M. Synthesis, characterization and catalytic properties of titania-silica catalysts / M. M. Mohamed, T. M. Salama, T. Yamaguchi // Colloids and Surfaces. A: Physicochemical and Engineering Aspects. – 2002. – Vol. 207, N 1–3. – P. 25–32. https://doi.org/10.1016/s0927-7757(02)00002-x

15. Panayotov, D. A. Depletion of conduction band electrons in TiO2 by water chemisorption – IR spectroscopis studies of the independence of Ti–OH frequencies on electron concentration / D. A. Panayotov, J. T. Yates // Chem. Phys. Letters. – 2005. – Vol. 410, N 1–3. – P. 11–17. https://doi.org/10.1016/j.cplett.2005.03.146


##reviewer.review.form##

Праглядаў: 199


Creative Commons License
Кантэнт даступны пад ліцэнзіяй Creative Commons Attribution 3.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)