Mechanochemical structural nanoengineering of heterooxide photocatalysts TiO2/ V2O5 capable to accumulating photoinduced charges
https://doi.org/10.29235/1561-8323-2024-68-3-207-213
Abstract
The mechanochemical method yielding a composite photocatalyst TiO2/V2O5 of tubular morphology under localized mechanic impact on a mixture of dispersed oxides has been proposed. It has been shown that under contact loading amounting to 25–39 MPa, tubular TiO2 is growing due to bonding of hydrated oxide particles via polycondensation. In the case of a mixture of titania and vanadium oxides, the tubular structure growth is accompanied with dispersing V2O5 particles resulting in the release of free standing lamellae. The mechanochemical activation produces nanоheterojunctions TiO2/V2O5 able to ensure an effective separation of photo-induced charges and their accumulation in redox active V2O5. Employing mechanochemical activation for synthesis of a TiO2/V2O5 composite photocatalyst results in 2.5-fold enhancement of the oxidation activity induced by preliminary photocatalyst exposure.
About the Authors
V. B. ShcherbakovaBelarus
Shcherbakova Valentina B. – Junior Researcher
15, P. Brovkа Str., 220072, Minsk
T. V. Sviridova
Belarus
Sviridova Tatiana V. – D. Sc. (Chemistry), Professor
4, Nezavisimosti Ave., 220050, Minsk
D. V. Sviridov
Belarus
Sviridov Dmitry V. – Corresponding Member, D. Sc. (Chemistry), Professor, Head of the Department
4, Nezavisimosti Ave., 220050, Minsk
V. E. Agabekov
Belarus
Agabekov Vladimir E. – Academician, D. Sc. (Chemistry), Professor, Head of the Department
36, Skorina Str., 220084, Minsk
References
1. Fujishima A., Rao T. N., Tryk D. A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, vol. 1, no. 1, pp. 1–21. https://doi.org/10.1016/s1389-5567(00)00002-2
2. Huang Z., Maness P.-C., Black D. M., Wolfrum E. J., Smolinski S. L., Jacoby W. A. Bactericidal mode of titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2000, vol. 130, no. 2–3, pp. 163–170. https://doi.org/10.1016/s1010-6030(99)00205-1
3. Skorb E. V., Antonouskaya L. I., Belyasova N. A., Shchukin D. G., Möhwald H., Sviridov D. V. Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2 : In2O3 nanocomposite. Applied Catalysis B: Environmental, 2008, vol. 84, no. 1–2, pp. 94–99. https://doi.org/10.1016/j.apcatb.2008.03.007
4. Liu D., Zi W., Sajjad S. D., Hsu C., Shen Y., Wei M., Liu F. Reversible electron storage in an all-vanadium photoelectrochemical storage cell: Synergy between vanadium redox and hybrid photocatalyst. ACS Catalysis, 2015, vol. 5, no. 4, pp. 2632–2639. https://doi.org/10.1021/cs502024k
5. Sviridova T. V., Sadovskaya L. Yu., Shchukina E. M., Logvinovich A. S., Shchukin D. G., Sviridov D. V. Nanoengineered thin-film TiO2/h–MoO3 photocatalysts capable to accumulate photoinduced charge. Journal of Photochemistry and Photobiology A: Chemistry, 2016, vol. 327, pp. 44–50. https://doi.org/10.1016/j.jphotochem.2016.04.018
6. Sviridova T. V., Sadovskaуa L. Yu., Konstantinova E. A., Belyasova N. A., Kokorin A. I., Sviridov D. V. Photoaccumulating TiO2–MoO3, TiO2–V2O5, and TiO2–WO3 heterostructures for self-sterilizing systems with the prolonged bactericidal activity. Catalysis Letters, 2019, vol. 149, pp. 1147–1153. https://doi.org/10.1007/s10562-019-02706-w
7. Kokorin A. I., Sviridova T. V., Kolbanev I. V., Sadovskaya L. Yu., Degtyarev E. N., Vorobieva G. A., Streletskii A. N., Sviridov D. V. Structure and photocatalytic properties of TiO2/MoO3 and TiO2/V2O5 nanocomposites obtained by mechanochemical activation. Russian Journal of Physical Chemistry B, 2018, vol. 12, pp. 330–335. https://doi.org/10.1134/s1990793118020173
8. Friščić T., Mottillo C., Titi H. M. Mechanochemistry for synthesis. Angewandte Chemie International Edition, 2020, vol. 59, no. 3, pp. 1018–1029. https://doi.org/10.1002/anie.201906755
9. Skorb E. V., Ustinovich E. A., Kulak A. I., Sviridov D. V. Photocatalytic activity of TiO2:In2O3 nanocomposite films towards the degradation of arylmethane and azo dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2008, vol. 193, no. 2–3, pp. 97–102. https://doi.org/10.1016/j.jphotochem.2007.06.012
10. Sviridova T. V., Stepanova L. I., Sviridov D. V. Nano- and microcrystals of molybdenum trioxide and metal-matrix composites on their basis. Ortiz M., Herrera T. H. (ed.). Molybdenum: Characteristics, Production and Applications. New York, USA, 2012, pp. 147–179.
11. Wedland W., Hecht H. G. Reflectance Spectroscopy. New York, 1966. 298 p.
12. Albu S. P. Tsuchiya H., Fujimoto S., Schmuki P. TiO2 Nanotubes – annealing effects on detailed morphology and structure. European Journal of Inorganic Chemistry, 2010, vol. 2010, no. 27, pp. 4351–4356. https://doi.org/10.1002/ejic.201000608
13. Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K. Formation of titanium oxide nanotube. Langmuir, 1998, vol. 14, no. 12, pp. 3160–3163. https://doi.org/10.1021/la9713816
14. Mohamed M. M., Salama T. M., Yamaguchi T. Synthesis, characterization and catalytic properties of titania-silica catalysts. Colloids and Surfaces. A: Physicochemical and Engineering Aspects, 2002, vol. 207, no. 1–3, pp. 25–32. https://doi.org/10.1016/s0927-7757(02)00002-x
15. Panayotov D. A., Yates J. T. Depletion of conduction band electrons in TiO2 by water chemisorption – IR spectroscopic studies of the independence of Ti–OH frequencies on electron concentration. Chemical Physics Letters, 2005, vol. 410, no. 1–3, pp. 11–17. https://doi.org/10.1016/j.cplett.2005.03.146