Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Composite coatings of poly(methyl methacrylate) with silicon dioxide nanoparticles for capacitive sensors of nickel content control in water

https://doi.org/10.29235/1561-8323-2024-68-3-247-254

Abstract

Pollution of the environment, in particular water sources, with heavy metals is a serious environmental problem. In this regard, it is relevant to develop new sensor systems that allow rapid tests and are not inferior in analytical parameters to classical methods for detecting heavy metals. Promising materials for creating such sensor systems are composite coatings based on polymer compounds with inorganic nanoparticles. The article presents the results of using poly(methyl methacrylate) (PMMA) coatings and PMMA nanocomposites with silicon dioxide nanoparticles (SiO2 NPs) to develop capacitive sensors for analyzing the content of Ni2+ ions in water. The structural and morphological characteristics of a conductive nickel layer and nanostructured films based on poly(methyl methacrylate) were studied using atomic force microscopy. Based on the experimental data on the dependence of the capacitance characteristics of sensors on the concentration of Ni2+ in solutions, the operating characteristics of sensors were established: response time is 5 min; working range of concentrations of Ni2+ ions: 1 ‧ 103 – 50 mM; lower detection limit ≈ 0.06 mg/l (maximum nickel concentration limit in water is 0.1 mg/l). It has been shown that the formation of a coating of the composition PMMA + NPs-SiO2 (1 : 41.7 mol) on a conductive nickel layer using the spin-coating method leads to increasing the sensitivity of a sensor and its service life (up to seven cycles).

About the Authors

D. V. Sapsaliou
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus; Belarusian State Pedagogical University named after Maxim Tank
Belarus

Sapsaliou Dmitry V. – Junior Researcher

15, P. Brovka Str., 220072, Minsk;

Postgraduate Student

18, Sovetskaya Str., 220030, Minsk



G. B. Melnikova
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus
Belarus

Melnikova Galina B. – Ph. D. (Engineering), Senior Researcher

15, P. Brovka Str., 220072, Minsk



A. V. Aksiuchyts
Belarusian State University of Informatics and Radioelectronics
Belarus

Aksiuchyts Aliaksandr V. – Postgraduate Student, Junior Researcher

6, P. Brovka Str., 220013, Minsk



T. N. Tolstaya
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus
Belarus

Tolstaya Tatyana N. – Researcher

15, P. Brovka Str., 220072, Minsk



D. A. Kotov
Belarusian State University of Informatics and Radioelectronics
Belarus

Kotov Dmitry A. – Ph. D. (Engineering), Associate Professor

6, P. Brovka Str., 220013, Minsk



S. A. Chizhik
A.V. Luikov Heat and Mass transfer Institute of the National Academy of Sciences of Belarus
Belarus

Chizhik Sergei A. – Academician, D. Sc. (Engineering), Professor, Chief Researcher

15, P. Brovka Str., 220072, Minsk



References

1. Garcia-Miranda Ferrari A., Carrington P., Rowley-Neale S. J., Banks C. E. Recent advances in portable heavy metal electrochemical sensing platforms. Environmental Science: Water Research & Technology, 2020, vol. 6, no. 10, pp. 2676–2690. https://doi.org/10.1039/d0ew00407c

2. Buledi J. A., Amin S., Haider S. I., Bhanger M. I., Solangi A. R. A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. Environmental Science and Pollution Research, 2021, vol. 28, pp. 58994–59002. https://doi.org/10.1007/s11356-020-07865-7

3. Avuthu S. G. R., Narakathu B. B., Eshkeiti A., Emamian S., Bazuin B. J., Joyce M., Atashbar M. Z. Detection of heavy metals using fully printed three electrode electrochemical sensor. IEEE SENSORS 2014 Proceedings. Valencia, Spain, 2014, pp. 669–672. https://doi.org/10.1109/ icsens.2014.6985087

4. Ming Li, Honglei Gou, Israa Al-Ogaidi, Nianqiang Wu. Nanostructured Sensors for Detection of Heavy Metals: A Review. ACS Sustainable Chemistry & Engineering, 2013, vol. 1, no. 7, pp. 713–723. https://doi.org/10.1021/sc400019a

5. Kanoun O., Lazarević-Pašti T., Pašti I., Nasraoui S., Talbi M., Brahem A., Adiraju A., Sheremet E., Rodriguez R. D., Ali M. B., Al-Hamry A. A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. Sensors, 2021, vol. 21, no. 12, art. 4131. https://doi.org/10.3390/s21124131

6. Shakeel A., Rizwan K., Farooq U., Iqbal S., Iqbal T., Awwad N. S., Ibrahium H. A. Polymer based nanocomposites: A strategic tool for detection of toxic pollutants in environmental matrices. Chemosphere, 2022, vol. 303, part 1, art. 134923. https://doi.org/10.1016/j.chemosphere.2022.134923

7. Wang Y., Xu Y., Jiang J., Li Y., Tong J., Bian C. A Portable Sensor System with Ultramicro Electrode Chip for the Detection of Heavy-Metal Ions in Water. Micromachines, 2021, vol. 12, no. 12, art. 1468. https://doi.org/10.3390/mi12121468

8. Pathak P., Hwang J.-H., Li R. H. T., Rodriguez K. L., Rex M. M., Lee W. H., Cho H. J. Flexible copper-biopolymer nanocomposite sensors for trace level lead detection in water. Sensors and Actuators B: Chemical, 2021, vol. 344, art. 130263. https://doi.org/10.1016/j.snb.2021.130263

9. Wiziack N. K. L., Paterno L. G., Fonseca F. J., Mattoso L. H. C. Effect of film thickness and different electrode geometries on the performance of chemical sensors made of nanostructured conducting polymer films. Sensors and Actuators B: Chemical, 2007, vol. 122, no. 2, pp. 484–492. https://doi.org/10.1016/j.snb.2006.06.016

10. Tsekenis G., Filippidou M. K., Chatzipetrou M., Tsouti V., Zergioti I., Chatzandroulis S. Heavy metal ion detection using a capacitive micromechanical biosensor array for environmental monitoring. Sensors and Actuators B: Chemical, 2015, vol. 208, pp. 628–635. https://doi.org/10.1016/j.snb.2014.10.093

11. Tian B., Kou Y., Jiang X., Lu J., Xue Y., Wang M., Tan L. Ultrasensitive determination of mercury ions using a glassy carbon electrode modified with nanocomposites consisting of conductive polymer and amino-functionalized graphene quantum dots. Microchimica Acta, 2020, vol. 187, art. 210. https://doi.org/10.1007/s00604-020-4191-1

12. Katowah D. F., Alqarni S., Mohammed G. I., Al Sheheri S. Z., Alam M. M., Ismail S. H., Asiri A. M., Hussein M. A., Rahman M. M. Selective Hg2+ sensor performance based various carbon‐nanofillers into CuO‐PMMA nanocomposites. Polymers for Advanced Technologies, 2020, vol. 31, no. 9, pp. 1946–1962. https://doi.org/10.1002/pat.4919

13. Eltayeb N. E., Khan A. Preparation and properties of newly synthesized Polyaniline@Graphene oxide/Ag nanocomposite for highly selective sensor application. Journal of Materials Research and Technology, 2020, vol. 9, no. 5, pp. 10459–10467. https://doi.org/10.1016/j.jmrt.2020.07.031

14. Echabaane M., Hfaiedh S., Smiri B., Saidi F., Dridi C. Development of an impedimetric sensor based on carbon dots and chitosan nanocomposite modified electrode for Cu(II) detection in water. Journal of Solid State Electrochemistry, 2021, vol. 25, pp. 1797–1806. https://doi.org/10.1007/s10008-021-04949-3

15. Sapsaliou D. V., Melnikova G. B., Aksiuchyts A. V., Tolstaya T. N., Kotov D. A., Chizhik S. A. Sensory layers of poly(methyl metacrylate) for capacitive sensors for analysis of the content of heavy metal cations in water. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2024, vol. 60, no. 1, pp. 81–88 (in Russian). https://doi.org/10.29235/1561-8331-2024-60-1-81-88


Review

Views: 34


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)