RECIPROCAL INVARIANT, MAXIMUM TENSION PRINCIPLE, AND THE LORENTZ COMPLEX GROUP AS THE SYMMETRY OF GRAVITATIONAL INTERACTION
Abstract
The quasi-Newtonian model of the reci ci procal invariant Hamil il tonian dynamics of gravitating masses, which obeys the Gibson maximum tension principle, is proposed. The symmetry of the model is defined by the Lorentz complex group with real metric. The mass of a model object is the only ly free parameter that defines space-time momentum-energy scales as well ll as frequency characteristics of the model. In the case of small masses there appears the classical analog of the Schrödinger "bouncing" (Zitterbewegung). In the limiting case of the Universe mass the model reproduces the "cyclic" variant of traditional cosmology. The availability of Gibbon’s limit results both in a universal relationship between energy density and cosmological expansion rate, as well as in the existence of the upper and lower limits of these quantities.
About the Author
L. M. TOMILCHIKBelarus
References
1. Born, M. A sugg gg estion for unifying quantum theory and relativity / M. Born // Proc. Roy. Lond. – 1938. – A165.291.
2. Born, M. Reciprocity Theory of Elementary Particles / M. Born // Rev. Mod. Phys. – 1949. – Vol. 21, N 3. – P. 463–473.
3. Bolognesi, S. The cosmology of trans-Plankian theory and dark energy / S. Bolognesi // Int. J. Mod. Phys. – 2014. – D23. – 1450046.
4. Bolognesi, S. Born Reciprocity and Cosmic Accelarations / S. Bolognesi // Advances in Dark Energy Reseach / ed. Miranda L. Ortiz. – Nova Science Publishers. Inc., 1915. – P. 56–74; Arxiv: 1506.02187 v.3, hep-th.
5. Gibbons, G. W. The Maximum Principle Tension in General Relativity / G. W. Gibbons // Found. Phys. – 2002. –Vol. 32. – P. 1891–1901.
6. Barut, A. O. Complex Lorentz Group with a Real Metric: Group Structure / A. O. Barut // J. Math. Phys. – 1964. –Vol. 5, N 11. – P. 1652–1656.
7. Tomilchik, L. M. Born Reciprocity, Maximum Tension and Conformally-Flat Geometry with Gaussian-Like Metric / L. M. Tomilchik // Actual Problems of MicroWorld Physics: Proc. Int. School-Sem. Gomel, Belarus, July 15–26, 2009. – Dubna, 2011. – Vol. 2. – Р. 81–97.
8. Томильчик, Л. М. Об условиях синхронизируемости часов в СТО / Л. М. Томильчик // Изв. АН БССР. Сер. физ.-мат. наук. – 1974. – № 4. – С. 72–81.
9. Тараканов, А. Н. О решениях и функциях Грина взаимно-инвариантного уравнения М. Борна. I. Скалярный случай / А. Н. Тараканов, Л. М. Томильчик // Изв. АН БССР. Сер. физ.-мат. наук. – 1981. – № 5. – С. 125–126. № 583-81. Dep.
10. Tomilchik, L. M. Conformally-Flat Metric, Position-Dependent Mass and Cold Dark Matter. / L. M. Tomilchik, V. V. Kudryashov // Actual Problems of MicroWorld Physics: Proc. Int. School-Sem. Gomel, Belarus, July 28–August 8, 2003 / ed. by P. Starovoitov. – Dubna, 2004. – Vol. 1. – Р. 24–42.