Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Optical nanotransceivers in photonics

https://doi.org/10.29235/1561-8323-2024-68-4-288-295

Abstract

The analogy used in nanophotonics with radiophysics, on the basis of which the notion of an optical nanoantenna was introduced and fruitfully used, is extended to the case of two-step processes with optical excitation of a quantum emitter (scatterer) and subsequent emission of secondary photons and the concept of an “optical nanotransceiver” (transceiver), i. e. a device receiving primary and generating secondary photons is introduced. The nanotransceiver efficiency parameter is introduced, which is defined by the product of the primary radiation intensity factor and the local density of photonic states at the secondary radiation frequency. This nanotransceiver parameter determines scattered radiation intensity enhancement and a maximum possible value of photoluminescence enhancement. The latter is achieved for emitters with low intrinsic quantum yield.

About the Authors

S. V. Gaponenko
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Gaponenko Sergey V. – Academician, D. Sc. (Physics and Mathematics), Director

68, Nezavisimosti Ave., 220072, Minsk



T. A. Efimova
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Efimova Taisia A. – Postgraduate Student, Junior Researcher

68, Nezavisimosti Ave., 220072, Minsk



References

1. Gaponenko S. V., Guzatov D. V. Colloidal plasmonics for active nanophotonics. Proceedings of the IEEE, 2020, vol. 108, no. 5, pp. 704–720. https://doi.org/10.1109/jproc.2019.2958875

2. Soler M., Lechuga L. M. Principles, technologies, and applications of plasmonic biosensors. Journal of Applied Physics, 2021, vol. 129, no. 11, art. 111102. https://doi.org/10.1063/5.0042811

3. Zhang Y. J., Radjenovic P. M., Zhou X. S., Zhang H., Yao J. L., Li J. F. Plasmonic core-shell nanomaterials and their applications in spectroscopies. Advanced Materials, 2021, vol. 33, no. 50, art. 2005900. https://doi.org/10.1002/adma.202005900

4. Fischer H., Martin O. J. F. Engineering the optical response of plasmonic nanoantennas. Optics Express, 2008, vol. 16, no. 12, pp. 9144–9154. https://doi.org/10.1364/oe.16.009144

5. Krasnok A. E., Denisyuk A. I., Belov P. A., Simovski C. R., Kivshar Yu. S., Maksymov I. S., Miroshnichenko A. E. Optical nanoantennas. Physics-Uspekhi, 2013, vol. 56, no. 6, pp. 539–564. https://doi.org/10.3367/ufne.0183.201306a.0561

6. Slepyan G. Y., Vlasenko S., Mogilevtsev D. Quantum antennas. Advanced Quantum Technologies, 2020, vol. 3, no. 4, art. 1900120. https://doi.org/10.1002/qute.201900120

7. Gaponenko S. V. Introduction to Nanophotonics. Cambridge, 2010. 465 p. https://doi.org/10.1017/cbo9780511750502

8. Brus L. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Accounts of Chemical Research, 2008, vol. 41, no. 12, pp. 1742–1749. https://doi.org/10.1021/ar800121r

9. Gaponenko S. V., Guzatov D. V. Possible rationale for ultimate enhancement factor in single molecule Raman spectroscopy. Chemical Physics Letters, 2009, vol. 477, no. 4–6, pp. 411–414. https://doi.org/10.1016/j.cplett.2009.07.043

10. Gaponenko S. V., Shabunya-Klyachkovskaya E. V., Belkov M. V. High-sensitivity vibrational spectroscopy using nanostructures and its application to art painting research. Journal of Applied Spectroscopy, 2023, vol. 90, pp. 257–264. https://doi.org/10.1007/s10812-023-01530-w

11. Jeong Y., Kook Y. M., Lee K., Koh W. G. Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosensors and Bioelectronics, 2018, vol. 111, pp. 102–116. https://doi.org/10.1016/j.bios.2018.04.007

12. Kulakovich O. S., Gaponenko S. V., Guzatov D. V. Metal-dielectric nanostructures for enhancement of molecular fluorescence. Journal of Applied Spectroscopy, 2023, vol. 90, pp. 567–575. https://doi.org/10.1007/s10812-023-01567-x

13. Guzatov D. V., Vaschenko S. V., Stankevich V. V., Lunevich A. Ya., Glukhov Yu. F., Gaponenko S. V. Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment. Journal of Physical Chemistry C, 2012, vol. 116, no. 19, pp. 10723–10733. https://doi.org/10.1021/jp301598w

14. Kidwai O., Zhukovsky S. V., Sipe J. E. Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations. Physical Review A, 2012, vol. 85, no. 5, art. 053842. https://doi.org/10.1103/physreva.85.053842

15. Klimov V. V., Ducloy M., Letokhov V. S. Spontaneous emission of an atom in the presence of nanobodies. Quantum Electronics, 2001, vol. 31, no. 7, art. 569. https://doi.org/10.1070/qe2001v031n07abeh002007

16. Guzatov D. V., Gaponenko S. V., Demir H. V. Plasmonic enhancement of electroluminescence. AIP Advances, 2018, vol. 8, no. 1, art. 015324. https://doi.org/10.1063/1.5019778

17. Guzatov D. V., Gaponenko S. V. Application of plasmonic luminescence enhancement for improvement of LED systems. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2017, vol. 60, no. 6, pp. 37–42 (in Russian).

18. Gaponenko S. V., Guzatov D. V. Enhancement of molecule fluorescence near a spherical metal nanoparticle. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2012, vol. 56, no. 3, pp. 57–62 (in Russian).

19. Diaspro A., Chirico G., Collini M. Two-photon fluorescence excitation and related techniques in biological microscopy. Quarterly Reviews of Biophysics, 2005, vol. 38, no. 2, pp. 97–166. https://doi.org/10.1017/s0033583505004129


Review

Views: 183


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)