Preparing kaolinite nanotubes and their catalytic activation by acid treatment
https://doi.org/10.29235/1561-8323-2024-68-4-311-316
Abstract
Aluminosilicate nanotubes (ANT) with a length of 600–1000 nm and a diameter of 15–25 nm were obtained by successive intercalation of kaolin with dimethyl sulfoxide and methanol followed by treatment with a cetyltrimethylammonium chloride solution. It is shown for the first time that the treatment of ANT with a mixture of H2SO4 –H2O2 leads to removing organic impurities from them and appearing catalytic activity in the α-pinene epoxide isomerization, the products of whicn are campholenic (41.4 %) and iso-campholenic (22.7 %) aldehydes in cyclohexane and trans-carveol (up to 56.0 %) in dimethyl sulfoxide.
About the Authors
A. Yu. SidorenkoBelarus
Sidorenko Alexander Yu. – Ph. D. (Chemistry), Head of
the Laboratory
36, Skorina Str., 220084, Minsk
Y. yu. Yakubov
Uzbekistan
Yakubov Yuldosh Yu. – D. Sc. (Chemistry), Chief Researcher
77-a, Mirzo-Ulugbek Str., 100170, Tashkent
V. E. Agabekov
Belarus
Agabekov Vladimir E. – Academician, D. Sc. (Chemistry), Professor, Head of the Department
36, Skorina Str., 220084, Minsk
B. D. Mamatkodirov
Uzbekistan
Mamatkodirov Behzodjon D. – Postgraduate Student
77-a, Mirzo-Ulugbek Str., 100170, Tashkent
T. V. Sviridova
Belarus
Sviridova Tatiana V. – D. Sc. (Chemistry), Professor
4, Nezavisimosti Ave., 220050, Minsk
A. B. Ibragimov
Uzbekistan
Ibragimov Aziz B. – D. Sc. (Chemistry), Professor, Director
77-a, Mirzo-Ulugbek Str., 100170, Tashkent
References
1. Massaro M., Noto R., Riela S. Past, present and future perspectives on halloysite clay minerals. Molecules, 2020, vol. 25, no. 20, art. 4863. https://doi.org/10.3390/molecules25204863
2. Massaro M., Noto R., Riela S. Halloysite nanotubes: smart nanomaterials in catalysis. Catalysts, 2022, vol. 12, no. 2, art. 149. https://doi.org/10.3390/catal12020149
3. Sidorenko A. Yu., Kurban Yu. M., Il’ina I. V., Li-Zhulanov N. S., Korchagina D. V., Ardashov O. V., Wärnå J., Volcho K. P., Salakhutdinov N. F., Murzin D. Yu., Agabekov V. E. Catalytic synthesis of terpenoid-derived hexahydro-2H-chromenes with analgesic activity over halloysite nanotubes. Applied Catalysis A: General, 2021, vol. 618, art. 118144. https://doi.org/10.1016/j.apcata.2021.118144
4. Yuan P., Tan D., Annabi-Bergaya F., Yan W., Liu D., Liu Z. From platy kaolinite to aluminosilicate nanoroll via onestep delamination of kaolinite: effect of the temperature of intercalation. Applied Clay Science, 2013, vol. 83–84, pp. 68–76. https://doi.org/10.1016/j.clay.2013.08.027
5. Li X., Wang D., Liu Q., Komarneni S. A comparative study of synthetic tubular kaolinite nanoscrolls and natural halloysite nanotubes. Applied Clay Science, 2019, vol. 168, pp. 421–427. https://doi.org/10.1016/j.clay.2018.12.014
6. Liu Q., Li X., Cheng H. Insight into the self-adaptive deformation of kaolinite layers into nanoscrolls. Applied Clay Science, 2016, vol. 124–125, pp. 175–182. https://doi.org/10.1016/j.clay.2016.02.015
7. Zhang S., Liu Q., Yang Y., Zhang H., Liu J., Zeng S., LaChance A. M., Barrett A. T., Sun L. An efficient method to prepare aluminosilicate nanoscrolls under mild conditions. Chemical Communications, 2021, vol. 57, no. 6, pp. 789–792. https:// doi.org/10.1039/d0cc07291e
8. Qu H., He S., Su H. Efficient preparation of kaolinite/methanol intercalation composite by using a Soxhlet extractor. Scientific reports, 2019, vol. 9, art. 8351. https://doi.org/10.1038/s41598-019-44806-y
9. Dyatlova E. M., Sergievich O. A., Bobkova N. M. Investigation of structural features of natural and enriched kaolins of the Republic of Belarus. Vestsi Natsyianal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus, Сhemical series, 2018, vol. 54, no. 1, pp. 96–102 (in Russian). https://doi.org/10.29235/1561-8331-2018-54-1-96-102
10. Agabekov V. E., Sidorenko A. Yu., Sviridova T. V., Kurban Yu. M., Sviridov D. V. Obtaining aluminosilicate nanotubes from natural kaolin. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2021, vol. 65, no. 5, pp. 576–581 (in Russian). https://doi.org/10.29235/1561-8323-2021-65-5-576-581
11. Yu J., Mateos J., Carraro M. Halloysite nanotubes as bimodal Lewis/Brønsted acid heterogeneous catalysts for the synthesis of heterocyclic compounds. Nanomaterials, 2023, vol. 13, no. 3, art. 394. https://doi.org/10.3390/nano13030394
12. Zhang S., Liu Q., Luo J., Yang N., Zhang Y., Liu Y., Sun L. Role of impurities in kaolinite intercalation and subsequent formation of nanoscrolls. Inorganic Chemistry, 2023, vol. 62, no. 33, p. 13205–13211. https://doi.org/10.1021/acs.inorgchem.3c01263
13. Sidorenko A. Yu., Kravtsova A. V., Aho A., Heinmaa I., Kuznetsova T. F., Murzin D. Yu., Agabekov V. E. Catalytic isomerization of α-pinene oxide in the presence of acid-modified clays. Molecular Catalysis, 2018, vol. 448, pp. 18–29. https://doi.org/10.1016/j.mcat.2018.01.021
14. Sidorenko A. Yu., Ignatovich Zh. V., Ermolinskaya A. L., Kravtsova A. V., Baranovskii A. V., Koroleva E. V., Agabekov V. E. Synthesis of fencholenic aldehyde from α-pinene epoxide on modified clays. Chemistry of Natural Compounds, 2018, vol. 54, pp. 893–897. https://doi.org/10.1007/s10600-018-2506-9