Development of the lentivirusbased vector system for ectopic expression and presentation of the melanoma antigen MLANA in human cells
https://doi.org/10.29235/1561-8323-2024-68-6-465-473
Abstract
Lentivirus-based vectors encoding two engineered melanoma associated MLANA proteins, named MLANAFLAG® and MLANA-FLAG®-LAMP1, were developed and tested. Transcriptional and translational activity of engineered proteins was confirmed in HEK 293T cells and dendritic cells by fluorescence confocal microscopy and flow cytometry. These new vectors can be used for lentiviral transduction of dendritic cells and the creation of new cell therapies for human melanoma.
About the Authors
N. G. AntonevichBelarus
Antonevich Natalia G. – Ph. D. (Biology), Associate Professor, Leading Researche
27, Akademicheskaya Str., 220072, Minsk
I. A. Badalyan
Belarus
Badalyan Iryna A. – Junior Researcher
27, Akademicheskaya Str., 220072, Minsk
A. Y. Hancharou
Belarus
Hancharou Andrei Y. – Ph. D. (Medicine), Associate Professor, Director
27, Akademicheskaya Str., 220072, Minsk
L. P. Titov
Belarus
Titov Leonid P. – Academician, D. Sc. (Medicine), Professor, Chief Researcher
50, Kazinets Str., 220099, Minsk
V. V. Grinev
Belarus
Grinev Vasily V. – Ph. D. (Biology), Associate Professor
10, Kurchatov Str., 220045, Minsk
References
1. World Melanoma Day. Available at: https://minzdrav.gov.by/ru/novoe-na-sayte/vsemirnyy-den-borby-s-melanomoy/ (accessed 20 June 2024) (in Russian).
2. Pham J. P., On L., Ardolino L., Hurwitz J., Salaun H., Sim H.-W., Joshua A. M. Efficacy of immune checkpoint inhibition in metastatic uveal melanoma: a systematic review and meta-analysis. Melanoma Research, 2023, vol. 33, no. 4, pp. 316–325. https://doi.org/10.1097/cmr.0000000000000900
3. Gonzalez H., Hagerling C., Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes and Development, 2018, vol. 32, pp. 1267–1284. https://doi.org/10.1101/gad.314617.118
4. Hancharou A. Y., Prokhorov A. V., Timohina O. V., Antonevich N. G., Minich Y. S., Rynda A. G., Prokhorov V. A. The use of a biomedical cell product based on monocytic dendritic cells in the treatment of bladder cancer patients: results of a clinical research. BGMU v avangarde meditsinskoi nauki i praktiki: sbornik nauchnykh trudov [BSMU at the forefront of medical science and practice: collection of scientific papers]. Minsk, 2021, iss. 11, pp. 205–215 (in Russian).
5. Zhu B., Sun Y., Wei X., Zhou H., Cao J., Li Ch., Wu N. Dendritic Cell Vaccine Loaded with MG-7 Antigen Induces Cytotoxic T Lymphocyte Responses against Gastric Cancer. Journal of Healthcare Engineering, 2022, vol. 2022, art. 1964081. https://doi.org/10.1155/2022/1964081
6. Huang R., Pan J., Zhang Y., Qin Q., Chao N., Huang T., Chen Ch., Zhao F., Luo G. GP96 and SMP30 Protein Priming of Dendritic Cell Vaccination Induces a More Potent CTL Response against Hepatoma. Journal of Healthcare Engineering, 2022, vol. 2022, art. 2518847. https://doi.org/10.1155/2022/2518847
7. De Mazière A. M., Muehlethaler K., van Donselaar E., Salvi S., Davoust J., Cerottini J.-Ch., Lévy F., Slot J. W., Rimoldi D. The melanocytic protein Melan-A/MART-1 has a subcellular localization distinct from typical melanosomal proteins. Traffic, 2002, vol. 3, no. 9, pp. 678–693. https://doi.org/10.1034/j.1600-0854.2002.30909.x
8. Grinev V. V., Seviaryn I. N., Posrednik D. V., Kosmacheva S. M., Potapnev M. P. Highly efficient transfer and stable expression of two genes upon lentivirus transduction of mesenchymal stem cells from human bone marrow. Russian Journal of Genetics, 2012, vol. 48, pp. 336–346. https://doi.org/10.1134/s1022795412030039
9. Shakhbazau A. V., Sevyaryn I. N., Goncharova N. V., Grinev V. V., Kosmacheva S. M., Potapnev M. P. Viral vectors for stable transduction of human mesenchymal stem cells: systems based on adeno-associated viruses and lentiviruses. Bulletin of Experimental Biology and Medicine, 2008, vol. 146, pp. 531–533. https://doi.org/10.1007/s10517-009-0320-x
10. Omasits U., Ahrens Ch. H., Müller S., Wollscheid B. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics, 2014, vol. 30, no. 6, pp. 884–886. https://doi.org/10.1093/bioinformatics/btt607
11. Zhou X., Zheng W., Li Y., Pearce R., Zhang Ch., Bell E. W., Zhang G., Zhang Ya. I-TASSER-MTD: a deep-learningbased platform for multi-domain protein structure and function prediction. Nature Protocols, 2022, vol. 17, pp. 2326–2353. https://doi.org/10.1038/s41596-022-00728-0
12. Park H., DiMaio F., Baker D. CASP11 refinement experiments with ROSETTA. Proteins: Structure, Function, and Bioinformatics, 2016, vol. 84, no. S1, pp. 314–322. https://doi.org/10.1002/prot.24862
13. Lee G. R., Won J., Heo L., Seok Ch. GalaxyRefine2: simultaneous refinement of inaccurate local regions and overall protein structure. Nucleic Acids Research, 2019, vol. 47, no. W1, pp. 451–455. https://doi.org/10.1093/nar/gkz288
14. Abualrous E. T., Sticht J., Freund C. Major histocompatibility complex (MHC) class I and class II proteins: impact of polymorphism on antigen presentation. Current Opinion in Immunology, 2021, vol. 70, pp. 95–104. https://doi.org/10.1016/j.coi.2021.04.009
15. Bonehill A., Heirman C., Tuyaerts S., Michiels A., Breckpot K., Brasseur F., Zhang Y., Van der Bruggen P., Thielemans K. Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. Journal of Immunology, 2004, vol. 172, no. 11, pp. 6649–6657. https://doi.org/10.4049/jimmunol.172.11.6649