Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Resistive switching mechanisms in memristor structures based on nonstoichiometric silicon nitride layers

https://doi.org/10.29235/1561-8323-2025-69-1-23-31

Abstract

The electrophysical properties and the resistive switching effect of the Ni/SiNx/p+Si/Ni memristor structure are investigated. Silicon nitride films with a thickness of ~40–60 nm were deposited in inductively coupled plasma from a SiH4– N2–Ar mixture at [SiH4]/[N2] ratios of 2.19 and 2.55, which ensured the formation of SiNx with an excess of Si compared to stoichiometry. To investigate the effect of thermal annealing on the resistive properties of SiNx, one of the wafers with a nitride film was annealed using rapid thermal annealing (RTA, 1200 °C, 3 minutes in Ar). The resistive switching effect was observed when applying a voltage from −4 to +10 V for test structures based on nitride films with refractive indices of 2.34 and 2.5. It is shown that the conductivity and charge transport mechanism in SiNx films with resistive properties depend on the deposition conditions and subsequent heat treatment. Possible mechanisms of resistive switching are discussed.

About the Authors

I. A. Romanov
Belarusian State University
Belarus

Romanov Ivan A. – Head of the Laboratory

5, Kurchatov Str., 220108, Minsk



N. S. Kovalchuk
Joint Stock Company “Integral”
Belarus

Kovalchuk Natalia S. – Ph. D. (Engineering), Deputy General Director – Chief Engineer

121A, Kazinets Str., 220108



L. A. Vlasukova
Belarusian State University
Belarus

Vlasukova Liudmila A. – Ph. D. (Physics and Mathe matics), Head of the Laboratory

5, Kurchatov Str., 220108, Minsk



I. N. Parkhomenko
Belarusian State University
Belarus

Parkhomenko Irina N. – Ph. D. (Physics and Mathe matics), Leading Researcher

5, Kurchatov Str., 220108, Minsk



F. F. Komarov
A. N. Sevchenko Institute of Applied Physical Problems
Belarus

Komarov Fadei F. – Academician, D. Sc. (Physics and Mathematics), Head of the Laboratory

7, Kurchatov Str., 220108, Minsk



S. A. Demidovich
Joint Stock Company “Integral”
Belarus

Demidovich Sergey A. – Leading Engineer

121A, Kazinets Str., 220108



References

1. Gritsenko V. A., Gismatulin A. A., Orlov O. M. Memory properties of SiOx and SiNx-based memristors. Nanobiotechnology Reports, 2021, vol. 16, no. 6, pp. 722–731. https://doi.org/10.1134/s2635167621060070

2. Jiang X., Ma Z., Xu J., Chen K., Xu L., Li W., Huang X., Feng D. a-SiNx:H-based ultra-low power resistive random access memory with tunable Si dangling bond conduction paths. Scientific Reports, 2015, vol. 5, art. 15762. https://doi.org/10.1038/srep15762

3. Yen T. J., Chin A., Gritsenko V. High performance all nonmetal SiNx resistive random access memory with strong process dependence. Scientific Reports, 2020, vol. 10, art. 2807. https://doi.org/10.1038/s41598-020-59838-y

4. Gismatulin A. A., Kamaev G. N., Volodin V. A., Gritsenko V. A. Charge transport mechanism in the forming-free memristor based on PECVD silicon oxynitride. Electronics, 2023, vol. 12, no. 3, art. 598. https://doi.org/10.3390/electronics12030598

5. Vasileiadis N., Karakolis P., Mandylas P., Ioannou-Sougleridis V., Normand P., Perego M., Komninou P., Ntinas V., Fyrigos I.-A., Karafyllidis I. G., Sirakoulis G. Ch., Dimitrakis P. Understanding the role of defects in Silicon Nitride-based resistive switching memories through oxygen doping. IEEE Transactions on Nanotechnology, 2021, vol. 20, pp. 356–364. https://doi.org/10.1109/tnano.2021.3072974

6. Gritsenko V. A., Perevalov T. V., Orlov O. M., Krasnikov G. Ya. Nature of traps responsible for the memory effect in silicon nitride. Applied Physics Letters, 2016, vol. 109, no. 6, art. 062904. https://doi.org/10.1063/1.4959830

7. Novikov Yu. N., Kamaev G. N., Prosvirin I. P., Gritsenko V. A. Memory properties and short-range order in silicon oxynitride-based memristors. Applied Physics Letters, 2023, vol. 122, no. 23, art. 232903. https://doi.org/10.1063/5.0151211

8. Waser R., Dittmann R., Staikov G., Szot K. Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Advanced Materials, 2009, vol. 21, no. 25–26, pp. 2632–2663. https://doi.org/10.1002/adma.200900375

9. Koval’chuk N. S., Demidovich S. A., Vlasukova L. A., Parkhomenko I. N., Komarov F. F. Mechanical stress in SiNx films grown by high density plasma enhanced chemical vapor deposition. Inorganic Materials, 2022, vol. 58, no. 9, pp. 906– 911. https://doi.org/10.1134/s0020168522090072

10. Parkhomenko I., Vlasukova L., Komarov F., Kovalchuk N., Demidovich S., Zhussupbekova A., Zhussupbekov K., Shvets I. V., Milchanin O., Zhigulin D., Romanov I. Effect of rapid thermal annealing on Si-based dielectric films grown by ICP-CVD. ACS Omega, 2023, vol. 8, no. 33, pp. 30768–30775. https://doi.org/10.1021/acsomega.3c04997

11. Wang J., Pan X., Luo W., Shuai Y., Zeng H., Xie Q., Huang S., Wu C., Zhang W. Voltage-programmable negative differential resistance in memristor of single-crystalline lithium niobate thin film. Applied Physics Letters, 2022, vol. 120, no. 3, art. 032901. https://doi.org/10.1063/5.0070132

12. Ascoli A., Menzel S., Rana V., Kempen T., Messaris I., Demirkol A. S., Schulten M., Siemon A., Tetzlaff R. A deep study of resistance switching phenomena in TaOx ReRAM cells: system‐theoretic dynamic route map analysis and experimental verification. Advanced Electronic Materials, 2022, vol. 8, no. 8, art. 2200182. https://doi.org/10.1002/aelm.202200182

13. Sonoda K., Tsukuda E., Tanizawa M., Yamaguchi Y. Electron trap level of hydrogen incorporated nitrogen vacancies in silicon nitride. Journal of Applied Physics, 2015, vol. 117, no. 10, art. 104501. https://doi.org/10.1063/1.4914163

14. Warren W. L., Seager C. H., Robertson J., Kanicki J., Poindexter E. H. Creation and properties of nitrogen dangling bond defects in silicon nitride thin films. Journal of the Electrochemical Society, 1996, vol. 143, no. 11, pp. 3685–3691. https://doi.org/10.1149/1.1837272

15. Vasilyev V. Yu. Silicon nitride thin film deposition for microelectronics and microsystems technologies. Part 8: Hydrogen influence on basic film properties. Nano- i mikrosistemnaya tekhnika = Nano and Microsystems technology, 2019, vol. 21, no. 6, pp. 352–367 (in Russian).


Review

Views: 72


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)