Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Synthesis of 2-alkyl-substituted isoflavonoid analogues with non-aromatic ring A on the basis of 2-[2-(aryl)acetyl]cyclohexane-1,3-diones and carboxylic acid anhydrides

https://doi.org/10.29235/1561-8323-2025-69-1-32-39

Abstract

A simple and convenient method for the synthesis of 2-alkyl-substituted analogues of isoflavonoids with nonaromatic ring A is proposed. The method consists of acylation of 2-[2-(aryl)acetyl]cyclohexane-1,3-diones with carboxylic acid anhydrides followed by intramolecular aldol-crotonic condensation of the resulting enolacylates in the presence of basic agents (triethylamine, sodium acetate, potassium carbonate). 2-[2-(Aryl)acetyl]cyclohexane-1,3-diones were obtained by condensation of 5-substituted cyclohexane-1,3-diones with arylacetic acids under the action of dicyclohexylcarbodiimide and 4-(dimethylamino)pyridine-catalyzed O-C isomerization of the resulting O-acylates.

About the Authors

F. S. Pashkovsky
Institute of Bioorganic Che mistry of the National Academy of Sciences of Belarus
Belarus

Pashkovsky Felix S. – Ph. D. (Chemistry), Leading Researcher

5/2, Kuprevich Str., 220141, Minsk



D. B. Rubinov
Institute of Bioorganic Che mistry of the National Academy of Sciences of Belarus
Belarus

Rubinov Dmitry B. – Ph. D. (Chemistry), Leading Researcher

5/2, Kuprevich Str., 220141, Minsk



V. I. Linnik
Institute of Bioorganic Che mistry of the National Academy of Sciences of Belarus
Belarus

Linnik Vladislav I. – Master of Science, Junior Researcher

5/2, Kuprevich Str., 220141, Minsk



F. A. Lakhvich
Institute of Bioorganic Che mistry of the National Academy of Sciences of Belarus
Belarus

Lakhvich Fedor A. – Academician, D. Sc. (Chemistry), Professor, Chief Researcher

5/2, Kuprevich Str., 220141, Minsk



References

1. Dias M. C., Pinto D. C. G. A., Silva A. M. S. Plant flavonoids: chemical characteristics and biological activity. Molecules, 2021, vol. 26, no. 17, art. 5377. https://doi.org/10.3390/molecules26175377

2. Chen S., Wang X., Cheng Y., Gao H., Chen X. A review of classification, biosynthesis, biological activities and potential applications of flavonoids. Molecules, 2023, vol. 28, no. 13, art. 4982. https://doi.org/10.3390/molecules28134982

3. Liga S., Paul C., Péter F. Flavonoids: overview of biosynthesis, biological activity, and current extraction techniques. Plants, 2023, vol. 12, no. 14, art. 2732. https://doi.org/10.3390/plants12142732

4. Tariq H., Asif S., Andleeb A., Hano C., Abbasi B. H. Flavonoid production: current trends in plant metabolic engineering and de novo microbial production. Metabolites, 2023, vol. 13, no. 1, art. 124. https://doi.org/10.3390/metabo13010124

5. Grynkiewicz G. Isoflavone research towards healthcare applications. Journal of Cancer Metastasis and Treatment, 2020, vol. 6, art. 48. https://doi.org/10.20517/2394-4722.2020.112

6. Pejčić T., Zeković M., Bumbaširević U., Kalaba M., Vovk I., Bensa M., Popović L., Tešić Ž. The role of isoflavones in the prevention of breast cancer and prostate cancer. Antioxidants (Basel), 2023, vol. 12, no. 2, art. 368. https://doi.org/10.3390/antiox12020368

7. Ramesh P., Jagadeesan R., Sekaran S., Dhanasekaran A., Vimalraj S. Flavonoids: classification, function, and molecular mechanisms involved in bone remodelling. Frontiers in Endocrinology, 2021, vol. 12, art. 779638. https://doi.org/10.3389/fendo.2021. 779638

8. Yari Z. Review of isoflavones and their potential clinical impacts on cardiovascular and bone metabolism markers in peritoneal dialysis patients. Preventive Nutrition and Food Science, 2022, vol. 27, no. 4, pp. 347–353. https://doi.org/10.3746/pnf.2022.27.4.347

9. Křížová L., Dadáková K., Kašparovská J., Kašparovský T. Isoflavones. Molecules, 2019, vol. 24, no. 6, art. 1076. https://doi.org/10.3390/molecules24061076

10. Sajid M., Stone S. R., Kaur P. Recent advances in heterologous synthesis paving way for future green-modular bioindustries: a review with special reference to isoflavonoids. Frontiers in Bioengineering and Biotechnology, 2021, vol. 9, art. 673270. https://doi.org/10.3389/fbioe.2021.673270

11. Naeem H., Momal U., Imran M., Shahbaz M., Hussain M., Alsagaby S. A., Al Abdulmonem W., Umar M., Mujtaba A., El-Ghorab A. H., Ghoneim M. M., Shaker M. E., Abdelgawad M. A., AL JBawi E. Anticancer perspectives of genistein: a comprehensive review. International Journal of Food Properties, 2023, vol. 26, no. 2, pp. 3305–3341. https://doi.org/10.1080/10942912.2023.2281257

12. Ogurtsova S. E., Rubinov D. B., Pashkovsky F. S., Tumar E. M., Savin A. O. Search for new antitumor agents among synthetic flavonoid compounds. Zdorov’e i okruzhayushchaya sreda: sbornik materialov Mezhdunarodnoi nauchno-prakticheskoi konferentsii [Health and environment: collection of materials of the International scientific and practical conference]. Minsk, 2023, pp. 422–425 (in Russian).

13. Ogurtsova S. E., Pashkovsky F. S., Rubinov D. B., Chukarina T. V., Prokopovich O. A. Cytotoxic activity of new synthetic flavonoid compounds. Zdorov’e i okruzhayushchaya sreda: sbornik nauchnykh trudov [Health and environment: collection of scientific papers]. Minsk, 2022, iss. 32, pp. 186–191 (in Russian).

14. Gazard M. M., Frasinyuk M. S. Synthesis of isoflavone-amino-acid conjugates. Chemistry of Natural Compounds, 2019, vol. 55, no. 5, pp. 813–817. https://doi.org/10.1007/s10600-019-02821-5

15. Chang M.-Y., Chen K.-T., Hsiao Y.-T., Chen S.-M. Ac2O-Mediated dearylacetylative dimerization of 2-arylacetyl-1naphthols: synthesis of naphtho[1,2-b]furan-3-ones. Journal of Organic Chemistry, 2020, vol. 85, no. 5, pp. 3605–3616. https://doi.org/10.1021/acs.joc.9b03298


Review

Views: 80


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)