Влияние термоциклирования на оптические свойства наноструктурированных покрытий TiAlN/Cu
https://doi.org/10.29235/1561-8323-2025-69-2-109-116
Анатацыя
Изучено изменение спектров диффузного отражения наноструктурированных покрытий TiAlN/Cu после термоциклирования в условиях, эквивалентных 16 часам нахождения на околоземной космической орбите. Тонкопленочные покрытия TiAlN с добавлением 7–8 % меди и различными соотношениями Ti/Al в металлической компоненте и между металлической и неметаллической компонентами твердого раствора сформированы методом реактивного магнетронного распыления. Показано, что отражение в спектральной области 500–2500 нм для образцов с бόльшей концентрацией титана заметно выше и увеличивается после термической нагрузки, тогда как для образца с меньшим содержанием титана отражение не изменяется. Из спектров отражения рассчитаны коэффициент солнечного поглощения αs и излучательная способность ε, а также отношение αs / ε. Для образцов с преобладанием металлической компоненты ((Ti + Al) / (N + C) = 1,3) и соотношением Ti / Al = 0,95 это отношение не изменялось после термоциклирования и составляло 1,44. Для образцов с повышенным содержанием титана (Ti / Al = 2,34) и эквимолярным соотношением металлической и неметаллической компонент значение αs / ε до термоциклирования составляло 3,82 и снижалось до 3,65 после термической нагрузки. Рассчитаны также ширина запрещенной зоны и ее изменение после термоциклирования для обоих типов покрытий. На основе данных оптической спектроскопии обсуждаются физические процессы, происходящие в композитах TiAlN/Cu при термоциклировании.
Аб аўтарах
И. ПархоменкоБеларусь
Л. Власукова
Беларусь
В. Зайков
Беларусь
Ф. Комаров
Беларусь
А. Камышан
Беларусь
М. Жукова
Беларусь
Спіс літаратуры
1. TiAlN/Cu Nanocomposite coatings deposited by filtered cathodic arc ion plating / L. Chen, Z. Pei, J. Xiao [et al.] // Journal of Materials Science and Technology. – 2017. – Vol. 33, N 1. – P. 111–116. https://doi.org/10.1016/j.jmst.2016.07.018
2. Friction behaviour of TiAlN films around cubic/hexagonal transition: A 2D grazing incidence X-ray diffraction and electron energy loss spectroscopy study / Y. Pinot, M.-J. Pac, P. Henry [et al.] // Thin Solid Films. – 2015. – Vol. 577. – P. 74–81. https://doi.org/10.1016/j.tsf.2015.01.044
3. Designing Cu chemical distribution in Ti(AlCu)N coatings for enhanced erosion-corrosion and antibacterial performance / X. Zhang, J. Wu, X. Tao [et al.] // Applied Surface Science. – 2024. – Vol. 648. – Art. 159053. https://doi.org/10.1016/j.apsusc.2023.159053
4. Nanostructured TiAlCuN and TiAlCuCN coatings for spacecraft: effects of reactive magnetron deposition regimes and compositions / F. F. Komarov, S. V. Konstantinov, I. V. Chizhov [et al.] // RSC Advances. – 2023. – Vol. 13, N 27. – P. 18898–18907. https://doi.org/10.1039/D3RA02301J
5. Optical properties of TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO tandem absorber coatings by phase-modulated spectroscopic ellipsometry / J. Jyothi, A. Biswas, P. Sarkar [et al.] // Applied Physics A. – 2017. – Vol. 123. – Art. 496. https://doi.org/10.1007/s00339-017-1103-2
6. Radiation tolerance of nanostructured TiAlN coatings under Ar+ ion irradiation / S. V. Konstantinov, E. Wendler, F. F. Komarov, V. A. Zaikov // Surface and Coatings Technology. – 2020. – Vol. 386. – Art. 125493. https://doi.org/10.1016/j.surfcoat.2020.125493
7. Система контроля расхода газов для применения в технологии реактивного магнетронного распыления / И. М. Климович, В. Н. Кулешов, В. А. Зайков [и др.] // Приборы и методы измерений. – 2015. – Т. 6, № 2. – С. 139–147.
8. Evolution of structural, morphological, mechanical and optical properties of TiAlN coatings by variation of N and Al amount / S. Asgary, M. Ghoranneviss, A. Mahmoodi, S. Zarein-dolab // Journal of Inorganic and Organometallic Polymers and Materials. – 2018. – Vol. 28. – P. 428–438. https://doi.org/10.1007/s10904-017-0603-z
9. Study of the optoelectronic properties of titanium nitride thin films deposited on glass by reactive sputtering in the cathodic cage / H. P. Madureira, R. M. Monção, A. A. Silva [et al.] // Materials Research. – 2023. – Vol. 26. – Art. e20230187. https://doi.org/10.1590/1980-5373-mr-2023-0187
10. The effect of annealing under non-vacuum on the optical properties of TiAlN non-vacuum solar selective absorbing coating prepared by cathodic arc evaporation / D. Gong, X. Cheng, W. Ye [et al.] // Journal of Wuhan University of Technology. Materials Science Edition. – 2013. – Vol. 28. – P. 256–260. https://doi.org/10.1007/s11595-013-0674-9
11. Design, fabrication and thermal stability of spectrally selective TiAlN/SiO2 tandem absorber / A. G. Wattoo, C. Xu, L. Yang [et al.] // Solar Energy. – 2016. – Vol. 138. – P. 1–9. https://doi.org/10.1016/j.solener.2016.08.053
12. Novel high-pressure phases of AlN: A first-principles study / C. Liu, M. Hu, K. Luo [et al.] // Computational Materials Science. – 2016. – Vol. 117. – P. 496–501. https://doi.org/10.1016/j.commatsci.2016.02.031
13. Valleti, K. Functional multi-layer nitride coatings for high temperature solar selective applications / K. Valleti, D. Murali Krishna, S. V. Joshi // Solar Energy Materials and Solar Cells. – 2014. – Vol. 121. – P. 14–21. https://doi.org/10.1016/j.solmat.2013.10.024
14. Chemical bonding states and solar selective characteristics of unbalanced magnetron sputtered TixM1−x−yNy films / M. M. Rahman, Z.-T. Jiang, P. Munroe [et al.] // RSC Advances. – 2016. – Vol. 6, N 43. – P. 36373–36383. https://doi.org/10.1039/c6ra02550a
15. Makuła, P. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra / P. Makuła, M. Pacia, W. Macyk // Journal of Physical Chemistry Letters. – 2018. – Vol. 9, N 23. – P. 6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892