Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Comparative analysis of the profile of expression of molecular markers of mesenchymal stem cells obtained from placental-umbilical cord complex tissues, adipose tissue and bone marrow

https://doi.org/10.29235/1561-8323-2025-69-4-314-321

Abstract

Mesenchymal stem cells (MSCs) are multifunctional adult stem cells that can be derived from various tissues, such as adult adipose tissue, peripheral blood, bone marrow, neonatal placenta, and umbilical cord tissue. MSCs have the capacity for self-renewal and multidirectional differentiation. Despite the absence of differences in the expression of the main surface markers, MSCs obtained from tissues of the placenta-umbilical cord complex, adipose tissue and bone marrow differ significantly in their molecular profile. Cellular heterogeneity is ubiquitous across MSC cultures from different species and tissues. During the course of the study, the expression level of cell surface markers that characterize the heterogeneity of MSCs obtained from various sources was assessed. MSCs from all tissues express typical MSC markers on their surface, including CD13, CD73, CD105 and CD90, in the absence of expression of hematopoietic markers (CD14, CD34 and CD45), costimulatory molecules CD86, membrane protein CD154, adhesion molecules CD15, and markers of embryonic stem cells (TRA-1-81 and TRA-1-60R). However, they differed in the expression of stemness markers (October 4, Nanog), coinhibitory molecules (CD273, CD274, and CD200), cell adhesion molecules CD146, surface antigen SSEA-4, and transcription factor GATA4. The results on the molecular profile of MSCs as a heterogeneous cell population allow for the scientific substantiation of the choice of tissue source for the creation of biomedical cell products with specified therapeutic properties.

About the Authors

E. G. Yurkina
Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology
Belarus

Yurkina Ekaterina G. – Senior Researcher

8, Semashko Str., 220087, Minsk



S. I. Krivenko
Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology
Belarus

Krivenko Svetlana I. – D. Sc. (Medicine), Professor, Deputy Director

8, Semashko Str., 220087, Minsk



V. V. Smolnikova
Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology
Belarus

Smolnikova Victoria V. – Ph. D. (Biology), Associate Professor, Leading Researcher

8, Semashko Str., 220087, Minsk



E. A. Primakova
Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology
Belarus

Primakova Evgeniya A. – Doctor

8, Semashko Str., 220087, Minsk



E. A. Nazarova
Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology
Belarus

Nazarova Ekaterina A. – Ph. D. (Biology), Doctor

8, Semashko Str., 220087, Minsk



A. A. Symanovich
Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology
Belarus

Symanovich Alla A. – Ph. D. (Biology), Associate Professor, Doctor

8, Semashko Str., 220087, Minsk



N. I. Dedyulya
Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology
Belarus

Dedyulya Natalia I. – Ph. D. (Biology), Associate Professor, Head of the Laboratory

8, Semashko Str., 220087, Minsk



I. A. Romanova
Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology
Belarus

Romanova Irina A. – Researcher

8, Semashko Str., 220087, Minsk



D. Yu. Efimov
Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology
Belarus

Efimov Denis Yu. – Ph. D. (Medicine), Associate Professor, Surgeon

8, Semashko Str., 220087, Minsk



A. E. Shcherba
Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology
Belarus

Shcherba Aliaksey E. – D. Sc. (Medicine), Professor, Deputy Director

8, Semashko Str., 220087, Minsk



O. O. Rummo
Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology
Belarus

Rummo Oleg O. – Academician, D. Sc. (Medicine), Professor, Director

8, Semashko Str., 220087, Minsk



References

1. Gomez-Salazar M., Gonzalez-Galofre Z. N., Casamitjana J., Crisan M., James A. W., Peault B. Five decades later, are mesenchymal stem cells still relevant. Frontiers in Bioengineering and Biotechnology, 2020, vol. 8, art. 148. https://doi.org/10.3389/f bioe.2020.00148

2. Squillaro T., Peluso G., Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplantation, 2016, vol. 25, no. 5, pp. 829–848. https://doi.org/10.3727/096368915X689622

3. Selich A., Daudert J., Hass R., Philipp F., Kaisenberg C., Paul G., Cornils K., Fehse B., Rittinghausen S., Schambach A., Rothe M. Massive clonal selection and transiently contributing clones during expansion of mesenchymal stem cell cultures revealed by lentiviral RGB-barcode technology. Stem Cells Translational Medicine, 2016, vol. 5, no. 5, pp. 591–601. https:// doi.org/10.5966/sctm.2015-0176

4. Wangler S., Menzel U., Li Z., Ma J., Hoppe S., Benneker L. M., Alini M., Grad S., Peroglio M. CD146/MCAM distinguishes stem cell subpopulations with distinct migration and regenerative potential in degenerative intervertebral discs. Osteoarthritis and Cartilage, 2019, vol. 27, no. 7, pp. 1094–1105. https://doi.org/10.1016/j.joca.2019.04.002

5. Kawanabe N., Murata S., Fukushima H., Ishihara Y., Yanagita T., Yanagita E., Ono M., Kurosaka H., Kamioka H., Itoh T., Kuboki T., Yamashiro T. Stage-specific embryonic antigen-4 identifies human dental pulp stem cells. Experimental Cell Research, 2012, vol. 318, no. 5, pp. 453–463. https://doi.org/10.1016/j.yexcr.2012.01.008

6. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F. C., Krause D. S., Deans R. J., Keating A., Prockop D. J., Horwitz E. M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006, vol. 8, no. 4, pp. 315–317. https://doi.org/10.1080/14653240600855905

7. Wu C.-C., Liu F.-L., Sytwu H.-K., Tsai C.-Y., Chang D.-M. CD146+ mesenchymal stem cells display greater therapeutic potential than CD146– cells for treating collagen-induced arthritis in mice. Stem Cell Research and Therapy, 2016, vol. 7, art. 23. https://doi.org/10.1186/s13287-016-0285-4

8. Kozlowska U., Krawczenko A., Futoma K., Jurek T., Rorat M., Patrzalek D., Klimczak A. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World Journal of Stem Cells, 2019, vol. 11, no. 6, pp. 347–374. https://doi.org/10.4252/wjsc.v11.i6.347

9. Sacchetti B., Funari A., Michienzi S., Cesare S. D., Piersanti S., Saggio I., Tagliafico E., Ferrari S., Robey P. G., Riminucci M., Bianco P. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 2007, vol. 131, no. 2, pp. 324–336. https://doi.org/10.1016/j.cell.2007.08.025

10. Petrenko Yu., Vackova I., Kekulova K., Chudickova M., Koci Z., Turnovcova K., Skalnikova H. K., Vodicka P., Kubinova S. A comparative analysis of multipotent mesenchymal stromal cells derived from different sources, with a focus on neuroregenerative potential. Scientific Reports, 2020, vol. 10, no. 1, art. 4290. https://doi.org/10.1038/s41598-020-61167-z

11. O’Connor K. C. Molecular profiles of cell-to-cell variation in the regenerative potential of mesenchymal stromal cells. Stem Cells International, 2019, vol. 2019, no. 1, art. 5924878. https://doi.org/10.1155/2019/5924878

12. Shahini A., Rajabian N., Choudhury D., Shahini S., Vydiam K., Nguyen T., Kulczyk J., Santarelli T., Ikhapoh I., Zhang Y., Wang J., Liu S., Stablewski A., Thiyagarajan R., Seldeen K., Troen B. R., Peirick J., Lei P., Andreadis S. T. Ameliorating the hallmarks of cellular senescence in skeletal muscle myogenic progenitors in vitro and in vivo. Science Advances, 2021, vol. 7, no. 36, art. eabe5671. https://doi.org/10.1126/sciadv.abe5671

13. Alvarez A., Hossain M., Dantuma E., Merchant S., Sugaya K. Nanog overexpression allows human mesenchymal stem cells to differentiate into neural cells – Nanog transdifferentiates mesenchymal stem cells. Neuroscience and Medicine, 2010, vol. 1, no. 1, pp. 1–13. https://doi.org/10.4236/nm.2010.11001

14. Tsai C.-C., Su P.-F., Huang Y.-F., Yew T.-L., Hung S.-C. Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Molecular Cell, 2012, vol. 47, no. 2, pp. 169–182. https://doi. org/10.1016/j.molcel.2012.06.020

15. Babu M. A., Jyothi R. S., Kaur I., Kumar S., Sharma N., Kumar M. R., Rajput P., Ali H., Gupta G., Subramaniyan V., Wong L. S., Kumarasamy V. The role of GATA4 in mesenchymal stem cell senescence: A new frontier in regenerative medicine. Regenerative Therapy, 2024, vol. 28, pp. 214–226. https://doi.org/10.1016/j.reth.2024.11.017

16. Razzaq S. S., Khan I., Naeem N., Salim A., Begum S., Haneef K. Overexpression of GATA binding protein 4 and myocyte enhancer factor 2C induces differentiation of mesenchymal stem cells into cardiac-like cells. World Journal of Stem Cells, 2022, vol. 14, no. 9, pp. 700–713. https://doi.org/10.4252/wjsc.v14.i9.700


Review

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)