Comparative accuracy analysis of molecular docking scoring functions using the CASF-2016 benchmark dataset
https://doi.org/10.29235/1561-8323-2025-69-6-454-461
Abstract
In this paper, a comparative analysis of the performance of AutoDock Vina, NNScore2, RF-Score-4, CENsible, HGScore, OnionNet-2, PIGNet2, and PLANET scoring functions designed to predict the binding affinity of small molecules to a target protein based on molecular docking data was made using the CASF-2016 benchmark dataset. The study has shown that the deep learning scoring functions PLANET and OnionNet-2 demonstrate the highest accuracy, effectively predicting the affinity of the ligand to the molecular target and increasing the reliability of identifying compound candidates with high potential for inhibitory activity. The obtained data indicate that both PLANET and OnionNet-2 can be used in computational protocols of molecular docking for subsequent calculation of the exponential consensus rank for each ligand and reliable selection of the most probable inhibitors of a given therapeutic target.
Keywords
About the Authors
K. V. FursBelarus
Furs Kanstantsin V. – Junior Researcher
6, Surganov Str., 220012, Minsk
Y. V. Laikou
Belarus
Laikou Yan V. – Junior Researcher
6, Surganov Str., 220012, Minsk
H. V. Hanchar
Belarus
Hanchar Hanna V. – Junior Researcher
6, Surganov Str., 220012, Minsk
A. V. Tuzikov
Belarus
Tuzikov Alexander V. – Corresponding Member, D. Sc. (Physics and Mathematics), Professor, Head of the Laboratory
6, Surganov Str., 220012, Minsk
A. M. Andrianov
Belarus
Andrianov Alexander M. – D. Sc. (Chemistry), Professor, Chief Researcher
5/2, Kuprevich Str., 220084, Minsk
References
1. Wu Z., Chen S., Wang Y., Li F., Xu H., Li M., Zeng Y., Wu Z., Gao Y. Current perspectives and trend of computer-aided drug design: a review and bibliometric analysis. International Journal of Surgery, 2024, vol. 110, no. 6, pp. 3848–3878. https://doi.org/10.1097/js9.0000000000001289
2. Paggi J. M., Pandit A., Dror R. O. The art and science of molecular docking. Annual Review of Biochemistry, 2024, vol. 93, pp. 389–410. https://doi.org/10.1146/annurev-biochem-030222-120000
3. Meli R., Morris G. M., Biggin P. C. Scoring functions for protein-ligand binding affinity prediction using structurebased deep learning: a review. Frontiers in Bioinformatics, 2022, vol. 2, art. 885983. https://doi.org/10.3389/fbinf.2022.885983
4. Kontoyianni M. Docking and virtual screening in drug discovery. Lazar I., Kontoyianni M., Lazar A. (eds). Proteomics for Drug Discovery: Methods in molecular biology. New York, 2017, vol. 1647, pp. 255–266. https://doi.org/10.1007/978-1-4939-7201-2_18
5. Wang L., Shi S. H., Li H., Zeng X. X., Liu S. Y., Liu Z. Q., Deng Y.-F., Lu A.-P., Hou T.-J., Cao D. S. Reducing false positive rate of docking-based virtual screening by active learning. Briefings in Bioinformatics, 2023, vol. 24, no. 1, art. bbac626. https://doi.org/10.1093/bib/bbac626
6. Su M., Yang Q., Du Y., Feng G., Liu Z., Li Y., Wang R. Comparative assessment of scoring functions: The CASF-2016 update. Journal of Chemical Information and Modeling, 2019, vol. 59, no. 2, pp. 895–913. https://doi.org/10.1021/acs.jcim.8b00545
7. Vieira T., Magalhaes R., Sousa S. F. Tailoring specialized scoring functions for more efficient virtual screening. Frontiers in Drug, Chemistry and Clinical Research, 2019, vol. 2, 4 p. https://doi.org/10.15761/FDCCR.1000118
8. Angelova M., Alov P., Tsakovska I., Jereva D., Lessigiarska I., Atanassov K., Pajeva I., Pencheva T. Pairwise performance comparison of docking scoring functions: Computational approach using InterCriteria analysis. Molecules, 2025, vol. 30, no. 13, art. 2777. https://doi.org/10.3390/molecules30132777
9. Bhatt R., Koes D. R., Durrant J. D. CENsible: interpretable insights into small-molecule binding with context explanation networks. Journal of Chemical Information and Modeling, 2024, vol. 64, no. 12, pp. 4651–4660. https://doi.org/10.1021/acs.jcim.4c00825
10. Crampon K., Giorkallos A., Vigouroux X., Baud S., Steffenel L. A. Heterogeneous graph convolutional neural network for protein-ligand scoring. Exploration of Drug Science, 2023, vol. 1, pp. 126–139. https://doi.org/10.37349/eds.2023.00010
11. Wang Z., Zheng L., Liu Y., Qu Y., Li Y.-Q., Zhao M., Mu Y., Li W. OnionNet-2: a convolutional neural network model for predicting protein-ligand binding affinity based on residue-atom contacting shells. Frontiers in Chemistry, 2021, vol. 9, art. 753002. https://doi.org/10.3389/fchem.2021.753002
12. Moon S., Hwang S. Y., Lim J., Kim W. Y. PIGNet2: a versatile deep learning-based protein-ligand interaction prediction model for binding affinity scoring and virtual screening. Digital Discovery, 2023, vol. 3, pp. 287–299. https://doi.org/10.1039/d3dd00149k
13. Zhang X., Gao H., Wang H., Chen Z., Zhang Z., Chen X., Li Y., Qi Y., Wang R. PLANET: a multi-objective graph neural network model for protein-ligand binding affinity prediction. Journal of Chemical Information and Modeling, 2024, vol. 64, no. 7, pp. 2205–2220. https://doi.org/10.1021/acs.jcim.3c00253
14. Palacio-Rodriguez K., Lans I., Cavasotto C. N., Cossio P. Exponential consensus ranking improves the outcome in docking and receptor ensemble docking. Scientific Reports, 2019, vol. 9, art. 5142. https://doi.org/10.1038/s41598-019-41594-3





































