MOLECULAR MECHANISMS OF REGULATION OF NINRATE REDUCTASE WITH EXOGENOUS 5-AMINOLEVULINIC ACID IN BARLEY SEEDLINGS GROWN UNDER SALINIZATION WITH NaCl
Abstract
The effect of exogenous 5-aminolevulinic acid (ALA) on the growth and activity of nitrate reductase (NR, EC 1.6.6.1), the synthesis of proline and the superoxide anion radical generation in barley (Hordeum vulgare L. cv. Gonar) seedlings grown under salinization with NaCl has been studied. The obtained data indicated that ALA (20, 40 and 80 mg L–1) increased the elongation and leaf blade expansion of barley seedlings exposed to 150 mM NaCl as compared to control plants, which were not treated with ALA. In the presence of the NR inductor – its substrate 20mM KNO3, exogenous ALA stimulated NR gene Nar 1 expression, increased the NR-protein content and enzymatic activities in plants grown in 150 mM NaCl solution. ALA also induced the accumulation of free proline and decreased the generation of superoxide anion radicals. Thus, this study demonstrates that ALA effects on salt-stressed barley seedlings involves the stimulation of NR activities both at transcriptional and translational levels and leads to complex physiological modifications, such as the improvements of plant growth and antiradical defense.
About the Authors
N. G. AVERINABelarus
Z. BEYZAEI
Belarus
A. SHERBAKOV
Belarus
References
1. Garg, S. K. Role and hormonal regulation of nitrate / S. K. Garg // Plant Sci. Feed. – 2003. – Vol. 3. – P. 13–20.
2. Warner, R. L. Inheritance and expression of NAD(P)H nitrate reductase in barley / R. L. Warner, K. R. Narayanan, F. Kleinhofs // Theor. Appl. Genet. – 1987. – Vol. 74. – P. 714–717.
3. Campbell, W. H. Functional domains of assimilatory nitrate reductases and nitrite reductases / W. H. Campbell, K. R. Kinghorn // Trends Biochem. Sci. – 1990. – Vol. 15. – P. 315–319.
4. Foyer, C. H. Markers and signals associated with nitrogen assimilation in higher plants / C. H. Foyer, M. Parry, G. J. Noctor // J. Exp. Bot. – 2003. – Vol. 54. – P. 585–593.
5. Garg, N. Nitrate reductase activity in roots and leaves of chickpea cultivars under salt stress / N. Garg, R. Singla // Span. J. Agric. Res. – 2005. – Vol. 3. – P. 617–629.
6. Sarwat, M. I. Increasing salt tolerance in some barley genotypes (Hordeum vulgare) by using kinetin and benzyladenin / M. I. Sarwat, M. H. El-Sherif // World J. Agricult. Sci. – 2007. – Vol. 3. – P. 617–629.
7. Aверина, Н. Г. Биосинтез тетрапирролов в растениях / Н. Г. Aверина, Е. Б. Яронская. – Минск: Беларус. навука, 2012.
8. Mishra, S. N. Stimulation of nitrate reductase activity by delta aminolevulinic acid in excised maize leaves / S. N. Mishra, H. S. Srivastava // Experientia. – 1983. – Vol. 39. – P. 1118–1120.
9. Effect of 5-aminolevulinic acid on leaf senescence and nitrogen metabolism of pakchoi under different nitrate levels / Z. Y. Wei [et al.] // J. Plant Nutr. – 2012. – Vol. 35. – P. 49–63.
10. Beyzaei, Z. Response of Nitrate Reductase to Exogenous Application of 5-Aminolevulinic Acid in Barley Plants / Z. Beyzaei, R. A. Sherbakov, N. G. Averina // J. Plant Growth Regul. – 2014. – Vol. 33. – P. 745–750.
11. Hernàndez, J. A. Salt stress-induced changes in superoxide dismutase isozymes in leaves and mesophyll protoplasts from Vigna unguiculata (L.) / J. A. Hernàndez, L. A. Del Rio, F. Sevilla // Walp. New Phytol. – 1994. – Vol. 126. – P. 37–44.
12. Akram, N. A. Aminolevulinic acid-induced changes in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) plants under saline regimes / N. A. Akram, M. Ashraf, F. Al-Qurainy // Sci. Hortic. – 2012. – Vol. 142. – P. 143–148.
13. 5-Aminolevulinic acid ameliorates salinity-induced metabolic, water-related and biochemical changes in Brassica napus L. / M. S. Naeem [et al.] // Acta Physiol. Plant. – 2011. – Vol. 33. – P. 517–528.
14. Salinity-induced changes in two cultivars of Vigna radiata: responses of antioxidative and proline metabolism / K. Sumithra [et al.] // Plant Growth Regul. – 2006. – Vol. 50. – P. 11–22.
15. Necessity of superoxide production for the development of etiolated wheat seedlings / B. Y. Shorning [et al.] // Biochemistry (Moscow). – 2000. – Vol. 65. – P. 1357–1361.
16. Weinstein, J. D. Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis / J. D. Weinstein, S. I. Beale // J. Biol. Chem. – 1983. – Vol. 258. – P. 6799–6807.
17. Роль метаболизма азота в формировании солеустойчивости растений ячменя (Hordeum vulgare L.) и пшеницы (Triticum aestivum) / Н. Г. Aверина [и др.] // Физиология растений. – 2014. – Т. 61. – С. 106–113.
18. Exogenous application of 5-aminolevulinic acid increases the transcript levels of sulfur transport and assimilatory genes, sulfate uptake, and cysteine and glutathione / A. Maruyama-Nakashita [и др.] // Soil. Sci. Plant Nutr. – 2010. – Vol. 56. – P. 281–288.
19. Evidence for a contribution of ALA synthesis to plastid-to-nucleus signaling / O. Czarnecki [et al.] // Front. Plant Sci. – 2012. – Vol. 3. – P. 236.
20. Кузнецов, Вл. В. Пролин при стрессе: биологическая роль, метаболизм, регуляция / Вл. В. Кузнецов, Н. И. Шевякова // Физиология растений. – 1999. – Т. 46. – С. 321–336.