SUFFICIENT SPECTRAL CONDITION FOR HAMILTONICITY OF A GRAPH
Abstract
About the Author
V. I. BENEDIKTOVICHBelarus
References
1. Brualdi, R. A. On the spectral radius of complementary acyclic matrices of zeros and ones / R. A. Brualdi, E. S. Solheid // SIAM J. Algebraic Discrete Methods. – 1986. – Vol. 7, N 2. – P. 265–272.
2. Fiedler, M. Spectral radius and Hamiltonicity of graphs / M. Fiedler, V. Nikiforov // Linear Algebra Appl. – 2010. – Vol. 432. – P. 2170–2173.
3. Lu, M. Spectral radius and Hamiltonian graphs / M. Lu, H. Liu, F. Tian // Linear Algebra Appl. – 2012. – Vol. 437. – P. 2670–2741.
4. Nikiforov, V. The spectral radius of graphs without paths and cycles of specified length / V. Nikiforov // Linear Algebra Appl. – 2010. – Vol. 432. – P. 2243–2256.
5. Yuan, W. On the spectral radii of graphs without given cycles / W. Yuan, B. Wang, M. Zhai // Electron. J. Linear Algebra. – 2012. – Vol. 23. – P. 599–606.
6. Krivelevich, M. Spase pseudo-random graphs are Hamiltonian / M. Krivelevich, B. Sudakov // J. Graph Theory. – 2003. – Vol. 42, N 1. – P. 17–33.
7. Mohar, B. A domain monotonicity theorem for graphs and hamiltonicity / B. Mohar // Discrete Appl. Math. – 1992. – Vol. 36, N 2. – P. 169–177.
8. Ning, B. Spectral radius and Hamiltonian properties of graphs / B. Ning, J. Ge // Linear and Multilinear Algebra. – 2014. – Vol. 63, N 8. – P. 1520–1530.
9. Hong, Y. A sharp upper bound of the spectral radius of graphs / Y. Hong, J. Shu, K. Fang // J. Combin. Theory. – 2001. – Vol. 81. – P. 177–183.
10. Лекции по теории графов / В. А. Емеличев [и др.]. – М.: Наука, 1990.
11. Brouwer, A. E. Spectra of graphs / A. E. Brouwer, W. H. Haemers. – Springer–Verlag, 2011.
12. Прасолов, В. В. Многочлены / В. В. Прасолов. – М.: МЦНМО, 2001.