Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

SUFFICIENT SPECTRAL CONDITION FOR HAMILTONICITY OF A GRAPH

Abstract

In this article the sufficient spectral condition for Hamiltonicity of a graph has been proved.

About the Author

V. I. BENEDIKTOVICH
Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk
Belarus


References

1. Brualdi, R. A. On the spectral radius of complementary acyclic matrices of zeros and ones / R. A. Brualdi, E. S. Solheid // SIAM J. Algebraic Discrete Methods. – 1986. – Vol. 7, N 2. – P. 265–272.

2. Fiedler, M. Spectral radius and Hamiltonicity of graphs / M. Fiedler, V. Nikiforov // Linear Algebra Appl. – 2010. – Vol. 432. – P. 2170–2173.

3. Lu, M. Spectral radius and Hamiltonian graphs / M. Lu, H. Liu, F. Tian // Linear Algebra Appl. – 2012. – Vol. 437. – P. 2670–2741.

4. Nikiforov, V. The spectral radius of graphs without paths and cycles of specified length / V. Nikiforov // Linear Algebra Appl. – 2010. – Vol. 432. – P. 2243–2256.

5. Yuan, W. On the spectral radii of graphs without given cycles / W. Yuan, B. Wang, M. Zhai // Electron. J. Linear Algebra. – 2012. – Vol. 23. – P. 599–606.

6. Krivelevich, M. Spase pseudo-random graphs are Hamiltonian / M. Krivelevich, B. Sudakov // J. Graph Theory. – 2003. – Vol. 42, N 1. – P. 17–33.

7. Mohar, B. A domain monotonicity theorem for graphs and hamiltonicity / B. Mohar // Discrete Appl. Math. – 1992. – Vol. 36, N 2. – P. 169–177.

8. Ning, B. Spectral radius and Hamiltonian properties of graphs / B. Ning, J. Ge // Linear and Multilinear Algebra. – 2014. – Vol. 63, N 8. – P. 1520–1530.

9. Hong, Y. A sharp upper bound of the spectral radius of graphs / Y. Hong, J. Shu, K. Fang // J. Combin. Theory. – 2001. – Vol. 81. – P. 177–183.

10. Лекции по теории графов / В. А. Емеличев [и др.]. – М.: Наука, 1990.

11. Brouwer, A. E. Spectra of graphs / A. E. Brouwer, W. H. Haemers. – Springer–Verlag, 2011.

12. Прасолов, В. В. Многочлены / В. В. Прасолов. – М.: МЦНМО, 2001.


Review

Views: 861


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)