MAXIMUM PRINCIPLE FOR FINITE-DIFFERENCE SCHEMES WITH NON SIGH-CONSTANT INPUT DATA
Abstract
In this article, for the so-called canonical form of a difference scheme under usual positivity conditions on the equation coefficients two-sided estimates for the approximate solution are obtained at the arbitrary non sigh-constant input data of the problem. The obtained results are used both for deriving two-sided estimates of monotone difference schemes, which approximate the initial boundary-value problem for the quasi-linear parabolic convection-diffusion equation, and for studying the correctness of the Gamma equation that is used for describing the option price in financial mathematics.
About the Authors
P. P. MATUSPoland
L. M. HIEU
Belarus
L. G. VULKOV
Bulgaria
References
1. Владимиров, В. С. Уравнения математической физики / В. С. Владимиров. – М.: Наука, 1981.
2. Самарский, А. А. Теория разностных схем / А. А. Самарский. – М.: Наука, 1977.
3. Koleva, M. N. A second-order positivity preserving numerical method for Gamma equation / M. N. Koleva, L. G. Vulkov // Appl. Math. and Comput. – 2013. – Vol. 220. – P. 722–734.
4. Фридман, А. Уравнения с частными производными параболического типа / А. Фридман. – М.: Издательство «Мир», 1968.