ANALOGUE OF THE RSA-CRYPTOSYSTEM IN QUADRATIC UNIQUE FACTORIZATION DOMAINS
Abstract
In the article, the analogue of a RSA-cryptosystem in general quadratic unique factorization domains is obtained. A scheme of digital signature on the basis of the generalized RSA cryptosystem is suggested. The analogue of Wiener’s theorem on low private key is obtained. We prove the equivalence of the problems of generalized RSA-modulus factorization and private key search when the domain of all algebraic integer elements of the quadratic field is Euclidean. A method to secure the generalized RSA-cryptosystem of the iterated encryption cracking is proposed.
About the Authors
M. VASKOUSKIBelarus
N. KONDRATYONOK
Belarus
References
1. Rivest, R. L. A method for obtaining digital signatures and public-key cryptosystems / R. L. Rivest, A. Shamir, L. Adleman // Communications of the ACM. – 1978. – Vol. 21. – P. 120–126.
2. Elkamchouchi, H. Extended RSA Cryptosystem and digital signature schemes in the domain of Gaussian integers / H. Elkamchouchi, K. Elshenawy, H. Shaban // Proceedings of the 8th International conference on communication systems. – 2002. – P. 91–95.
3. Li, B. Generalizations of RSA public key cryptosystem / B. Li // IACR. – Cryptology ePrint Arc. 2005.
4. Modified RSA in the domains of Gaussian integers and polynomials over finite fields / A. N. El-Kassar [et al.] // Proceedings of the ISCA 18th International conference on computer applications in industry and engineering. – Hawaii, USA, 2005. – P. 298–303.
5. Koval, A. Analysis of RSA over Gaussian integers algorithm // 5th international conference on information technology: new generations (ITNG 2008) / A. Koval, B. Verkhovsky. – Las Vegas, Nevada, USA, 2008. – P. 101–105.
6. Proceedings of the second international conference of soft computing for problem solving / B. V. Babu [et al.] // Advances in intelligent systems and computing. – 2014. – Vol. 236.
7. Rodossky, K. A. Euclidean algorithm / K. A. Rodossky. – Moscow: Nauka, 1988.
8. Introduction to number theoretical methods in cryptography / M. M. Gluhov [et al.]. – Saint-Petersburg: Lan’, 2011.
9. Koblitz, N. Course in number theory and cryptography / N. Koblitz. – Moscow: TVP, 2001.
10. Eggleton, R. B. Euclidean quadratic fields / R. B. Eggleton, C. B. Lacampagne, J. L. Selfridge // Amer. Math. Monthly. – 1992. – Vol. 99, N 9. – P. 829–837.
11. Cryptology / Y. S. Kharin [et al.]. – Minsk: BSU, 2013.