Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

ELECTROMAGNETIC FIELD IN OSCILLATING DE SITTER UNIVERSE: MAJORANA–OPPENHEIMER AND DUFFIN–KEMMER APPROACHES, EXACT SOLUTIONS

Abstract

The tetrad-based generalized complex formalism by Majorana–Oppenheimer is applied to examine an electromagnetic field in oscillating de Sitter Universe in nonstatic spherically symmetric coordinates. With the help of Wigner D-functions we separate the angular (Θ, φ) -dependence in the complex vector field E j (x) + iB j (x) from the (t, r)-dependence. After that, the system of differential equations in (t, r) variables is solved exactly. Relations between the complex 3-vector Majorana–Oppenheimer formalism and the 10-component Duffin–Kemmer–Petiau approach have been examined. On this basis, electromagnetic waves of magnetic and electric types have been constructed in the both formalisms. In the Duffin–Kemmer–Petiau formalism, the class of gradient-type solutions is constructed in Coulomb and Lorentz gauges.

About the Authors

E. M. OVSIYUK
Mozyr State Pedagogical University named after I. P. Shamyakin, Mozyr
Belarus


K. V. DASHUK
Mozyr State Pedagogical University named after I. P. Shamyakin, Mozyr
Belarus


O. V. VEKO
Mozyr State Pedagogical University named after I. P. Shamyakin, Mozyr
Belarus


References

1. Silberstein, L. Elektromagnetische Grundgleichungen in bivectorieller Behandlung / L. Silberstein // Ann. Phys. (Leiptzig). – 1907. – Vol. 22. – P. 579–586.

2. Silberstein, L. Nachtrag zur Abhandlung Über elektromagnetische Grundgleichungen in bivektorieller Behandlung / L. Silberstein // Ann. der Phys. – 1907. – Vol. 24. – P. 783–784.

3. Majorana, E. S cientific P apers. ( Unpublished). D eposited at t he « Domus G alileana» / E . M ajorana. – P isa, q uaderno 2 . – P. 101/1; 3, P. 11, 160; 15, P. 16; 17, P. 83, 159.

4. Oppenheimer, J. Note on Light Quanta and the Electromagnetic Field / J. Oppenheimer // Rev. – 1931. – Vol. 38. – P. 725–746.

5. Weber, H. Die partiellen Differential-Gleichungen der mathematischen Physik nach Riemann’s Vorlesungen / H. Weber. – Braunschweig, 1901.

6. Bialynicki-Birula, I. On the Wave Function of the Photon / I. Bialynicki-Birula // Acta Phys. Polon. – 1994. – Vol. 86. – P. 97–116.

7. Bialynicki-Birula, I. Photon Wave Function / I. Bialynicki-Birula // Progress in Optics. – 1996. – Vol. 36. – P. 248–294.

8. Sipe, J. Photon Wave Functions / J. Sipe // Phys. Rev. A. – 1995. – Vol. 52. – P. 1875–1883.

9. Gersten, A. Maxwell equations as the one photon quantum equation / A. Gersten // Found. of Phys. Lett. – 1998. – Vol. 12. – P. 291–298.

10. Rodrigues, W. A. The Many Faces of Maxwell, Dirac and Einstein Equations. Lecture Notes in Physics / W. A. Rodrigues, E. C. de Oliveira // The Many Faces of Maxwell, Dirac and Einstein Equations. Lecture Notes in Physics. – Springer, 2007. – Vol. 722.

11. Red’kov, V. The Lorentz Group, Noncommutative Space-Time, and Nonlinear Electrodynamics in Majorana-Oppenheimer Formalism / V. Red’kov, E. Tolkachev // NPCS. – 2010. – Vol. 13. – P. 249–266.

12. Maxwell Equations in Complex form of Majorana–Oppenheimer, Solutions with Cylindric Symmetry in Riemann S3 and Lobachevsky H3 spaces / A. A. Bogush [et al.] // Ricerche di matematica. – 2010. – Vol. 59. – P. 59–96.

13. Red’kov, V. Majorana–Oppenheimer Approach to Maxwell Electrodynamics. Part II. Curved Riemannian Space / V. M. Red’kov, N. G. Tokarevskaya, G. J. Spix // Adv. Appl. Clifford Algebras. – 2013. – Vol. 23. – P. 165–178.

14. Ovsiyuk, E. M. Majorana–Oppenheimer Approach to Maxwell Electrodynamics. Part III. Electromagnetic Spherical Waves in Spaces of Constant Curvature / E. M. Ovsiyuk, V. M. Red’kov, N. G. Tokarevskaya // Adv. Appl. Clifford Algebras. – 2013. – Vol. 23. – P. 153–163.

15. Electromagnetic Field on de Sitter Expanding Universe: Majorana–Oppenheimer Formalism, Exact Solutions in non-Static Coordinates / O. V. Veko [et al.] // NPCS. – 2014. – Vol. 17. – P. 17–39.

16. Ovsiyuk, E. M. Maxwell Electrodynamics and Boson Fields in Spaces of Constant Curvature / E. M. Ovsiyuk, V. V. Kisel, V. M. Red’kov. – New York, 2014.

17. Варшалович, Д. А. К вантовая т еория у глового момента / Д. А. Варшалович, А. Н. Москалев, В. К. Херсонский. – Ленинград, 1975.


Review

Views: 824


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)