ON THE UPPER BOUND OF THE AMOUNT OF POLYNOMIALS WITH BOUNDED DERIVATIVE AT A ROOT
Abstract
In the article we obtain an upper bound of the amount of integral polynomials from a special class of bounded degree and height with small value of derivative at а root of the polynomial on a given interval.
About the Author
A. S. KUDINBelarus
References
1. Спринджук, В. Г. Проблема Малера в метрической теории чисел / В. Г. Спринджук. – Минск, 1967.
2. Bernik, V. A divergent Khintchine theorem in the real, complex, and p-adic fields / V. Bernik, N. Budarina, D. Dickinson // Lithuanian Mathematical J. – 2008. – Vol. 48, N 2. – P. 158–173.
3. Baker, R. Sprindzuk’s theorem and hausdorff dimension / R. Baker // Mathematika. – 1976. – Vol. 23, N 2. – P. 184–197.
4. Bernik, V. Application of Hausdorff Dimension in the theory of Diophantine Approximation / V. Bernik // Acta Arithmetica. – 1983. – Vol. 42, N 3. – P. 219–253.
5. Гельфонд, А. О. Трансцендентные и алгебраические числа / А. О. Гельфонд. – М., 1952.