Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

FIRST MIXED PROBLEM FOR THE THIRD-ORDER HOMOGENEOUS UNSTRICT HYPERBOLIC EQUATION

Abstract

In this article we research the classical solutions of the boudary problems for the third-order unstrict hyperbolic equation. The equation is defined in the half-strip of two independent variables. There are Cauchy’s conditions on the bottom of the area and Dirichlet’s conditions on the side boundary. Using the method of characteristics, the analytic solutions of the considered problem are written out. The uniqueness of the solutions is proved.

About the Authors

V. I. KORZYUK
Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk
Belarus


A. A. MANDRYK
Belarusian State University, Minsk
Belarus


References

1. Руденко, О. В. Теоретические основы нелинейной акустики / О. В. Руденко, С. И. Солуян. – М., 1975.

2. Варламов, В. В. Об одной задаче распространения волн сжатия в вязкой среде / В. В. Варламов // Журн. вычислит. матем. и мат. физики. – 1988. – Т. 25, № 10. – С. 1561–1565.

3. Варламов, В. В. Об одной начально-краевой задаче для гиперболического уравнения третьего порядка / В. В. Варламов // Дифференц. уравнения. – 1990. – Т. 26, № 8. – С. 1455–1457.

4. Корзюк, В. И. Задача Коши для гиперболических дифференциально-операторных уравнений третьего порядка / В. И. Корзюк, Н. И. Юрчук // Дифференц. уравнения. – 1991. – Т. 27, № 8. – C. 1448–1450.

5. Корзюк, В. И. Энергетическое неравенство для граничной задачи гиперболического уравнения с волновым оператором третьего порядка / В. И. Корзюк // Дифференц. уравнения. – 1991. – Т. 27, № 6. – C. 1014–1022.

6. Корзюк, В. И. Граничная задача для гиперболического уравнения с волновым оператором 3-го порядка / В. И. Корзюк // Дифференц. уравнения. – 2004. – Т. 40, № 2. – C. 208–215.

7. Thomee, V. Estimates of the Friedrichs–Lewy type for a hyperbolic equation with three characteristics / V. Thomee // Math. Scand. – 1955. – Vol. 3. – P. 115–123.

8. Thomee, V. Estimates of the Friedrichs–Lewy type for mixed problems in the theory of linear hyperbolic differential equation in two independent variables / V. Thomee // Math. Scand. – 1957. – Vol. 5. – P. 93–113.

9. Thomee, V. Existence proofs for mixed problems for hyperbolic differential equations in two independent variables by means of the continuity method / V. Thomee // Math. Scand. – 1958. – Vol. 6, N 1. – P. 5–32.

10. Корзюк, В. И. Классическое решение первой смешанной задачи для гиперболического уравнения третьего порядка с волновым оператором / В. И. Корзюк, А. А. Мандрик // Дифференц. уравнения. – 2014. – Т. 50, № 4. – C. 492–504.

11. Корзюк, В. И. Решение задачи Коши для гиперболического уравнения с постоянными коэффициентами в случае двух независимых переменных / В. И. Корзюк, И. С. Козловская // Дифференц. уравнения. – 2012. – Т. 48, № 5. – C. 700–709.


Review

Views: 856


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)