Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

DECOMPOSABILITY OF UNITARY INVOLUTIONS IN ALGEBRAS OVER SPECIAL FIELDS

Abstract

The aim of the presented article is to prove that any unitary involution of involutory central simple algebra A over a global field or over a field of cohomological dimension not greater than 2 is decomposable with respect to the decomposition of A into primary components.

About the Author

V. I. YANCHEVSKIĬ
Institute of Mathematics of the National Academy of Sciences of Belarus
Belarus


References

1. Parimala, R. A question on the discriminants of involutions of central division algebras / R. Parimala, R. Sridharan, V. Suresh // Math. Ann. – 1993. – Vol. 297. – P. 575–580.

2. Yanchevskiĭ, V. I. Symmetric and Skew-Symmetric Elements of Involutions, Associated Groups and the Problem of Decomposability of Involutions / V. I. Yanchevskiĭ // Proc. of Symp. in Pure Math. – 1995. – Vol. 58, N 2. – P. 431–444.

3. Tikhonov, S. V. Symmetric elements, Hermitian forms, and cyclic involutions / S. V. Tikhonov, V. I. Yanchevskiĭ // Communications in Algebra. – 2015. – Vol. 43, N 11. – P. 4735–4744.

4. Прокопчук, А. В. О нециклических унитарных инволюциях гензелевых дискретно нормированных алгебр с делением / А. В. Прокопчук, В. И. Янчевский // Весцi НАН Беларусi. Сер. фiз.-мат. навук. – 2014. – № 1. – С. 51–53.


Review

Views: 752


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)