DECOMPOSABILITY OF UNITARY INVOLUTIONS IN ALGEBRAS OVER SPECIAL FIELDS
Abstract
The aim of the presented article is to prove that any unitary involution of involutory central simple algebra A over a global field or over a field of cohomological dimension not greater than 2 is decomposable with respect to the decomposition of A into primary components.
About the Author
V. I. YANCHEVSKIĬBelarus
References
1. Parimala, R. A question on the discriminants of involutions of central division algebras / R. Parimala, R. Sridharan, V. Suresh // Math. Ann. – 1993. – Vol. 297. – P. 575–580.
2. Yanchevskiĭ, V. I. Symmetric and Skew-Symmetric Elements of Involutions, Associated Groups and the Problem of Decomposability of Involutions / V. I. Yanchevskiĭ // Proc. of Symp. in Pure Math. – 1995. – Vol. 58, N 2. – P. 431–444.
3. Tikhonov, S. V. Symmetric elements, Hermitian forms, and cyclic involutions / S. V. Tikhonov, V. I. Yanchevskiĭ // Communications in Algebra. – 2015. – Vol. 43, N 11. – P. 4735–4744.
4. Прокопчук, А. В. О нециклических унитарных инволюциях гензелевых дискретно нормированных алгебр с делением / А. В. Прокопчук, В. И. Янчевский // Весцi НАН Беларусi. Сер. фiз.-мат. навук. – 2014. – № 1. – С. 51–53.