APPLICATION OF THE TRANSITION MATRIX MONTE CARLO TECHNIQUE TO SIMULATE DIFFERENT-COMPLEXITY LIQUIDS AT LOW TEMPERATURE
Abstract
About the Authors
D. V. SHAKHNOBelarus
A. V. SHAKHNO
Belarus
References
1. Equation of State Calculations by Fast Computing Machines / N. Metropolis [et al.] // J. Chem. Phys. – 1953. – Vol. 21, N 6. – P. 1087–1092.
2. Paluch, A. S. Comparing the Use of Gibbs Ensemble and Grand-Canonical Transition-Matrix Monte Carlo Methods to Determine Phase Equilibria / A. S. Paluch, V. K. Shen, J. R. Errington // Ind. Eng. Chem. Res. – 2008. – Vol. 47, N 13. – P. 4533–4541.
3. Smith, G. R. A study of the multi-canonical Monte Carlo method / G. R. Smith, A. D. Bruce // J. Phys. A: Math. Gen. – 1995. – Vol. 28, N 23. – P. 6623–6644.
4. Panagiotopoulos, A. Z. Monte Carlo methods for phase equilibria of fluids / A. Z. Panagiotopoulos // J. Phys.: Condens. Matter. – 2000. – Vol. 12, N 3. – Р. 25–30.
5. Cichowski, E. C. Determination of Henry’s law constants through transition matrix Monte Carlo simulation / E. C. Cichowski, T. R. Schmidt, J. R. Errington // Fluid Phase Equilib. – 2005. – Vol. 236, N 1. – P. 58–65.
6. Kumar, V. Monte Carlo simulation strategies for computing the wetting properties of fluids at geometrically rough surfaces / V. Kumar, S. Sridhar, J. R. Errington // J. Chem. Phys. – 2011. – Vol. 135, N 18. – P. 184702–184715.
7. Chen, H. Efficient Simulation of Binary Adsorption Isotherms Using Transition Matrix Monte Carlo / H. Chen, D. S. Sholl // Langmuir. – 2006. – Vol. 22, N 2. – P. 709–716.
8. Coarse-Grained Strategy for Modeling Protein Stability in Concentrated Solutions. II: Phase Behavior / V. K. Shen [et al.] // Biophys. J. – 2006. – Vol. 90, N 6. – P. 1949–1960.
9. Shen, V. K. Determination of fluid-phase behavior using transition-matrix Monte Carlo: Binary Lennard-Jones mixtures / V. K. Shen, J. R. Errington // J. Chem. Phys. – 2005. – Vol. 122, N 6. – P. 064508–064525.
10. Ferrenberg, A. M. New Monte Carlo technique for studying phase transitions / A. M. Ferrenberg, R. H. Swendsen // Phys. Rev. Lett. – 1989. – Vol. 61, N 23. – P. 2635–2638.
11. Ferrenberg, A. M. Optimized Monte Carlo Data Analysis / A. M. Ferrenberg, R. H. Swendsen // Phys. Rev. Lett. – 1989. – Vol. 63, N 12. – P. 1195–1198.
12. Jorgensen, W. L. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids / W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives // J. Am. Chem. Soc. – 1996. – Vol. 118, N 45. – P. 11225–11236.
13. Potoff, J. J. Vapor-Liquid Equilibria of Mixtures Containing Alkanes, Carbon Dioxide, and Nitrogen / J. J. Potoff, J. I. Siepmann // AIChE J. – 2001. – Vol. 43, N 7. – P. 1676–1682.
14. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides / G. A. Kaminski [et al.] // J. Phys. Chem. B. – 2001. – Vol. 105, N 28. – P. 6474–6487.
15. NIST ThermoData Engine // National Institute of Standards and Technology [Electronic resource]. – 2010. – Mode of access: www.nist.gov/srd/nist103b.cfm.