SPECTRAL RADIUS OF A BALANCED BIPARTITE GRAPH AND ITS HAMILTONICITY
Abstract
In this article, an improved lower bound for the spectral radius of a balanced bipartite graph of quite a large order giving the condition of existence of a Hamiltonian cycle in it and depending on the lower bound of the minimum degree of the graph has been obtained.
About the Author
V. I. BenediktovichBelarus
Ph. D. (Physics and Mathematics), Leading researcher
References
1. Ore O. Arc coverings of graphs. Annali di Matematica Pura ed Applicata, 1961, vol. 55, no. 1, pp. 315–321. doi. org/10.1007/bf02412090.
2. Ore O. Hamilton-connected graphs. Journal de Mathématiques Pures et Appliquées, 1963, vol. 42, pp. 21–27.
3. Bondy J. A., Chvátal V. A method in graph theory. Discrete Mathematics, 1976, vol. 15, no. 2, pp. 111–135. doi. org/10.1016/0012-365x(76)90078-9.
4. Brualdi R. A., Solheid E. S. On the spectral radius of complementary acyclic matrices of zeros and ones. SIAM Journal on Algebraic Discrete Methods, 1986, vol. 7, no. 2, pp. 265–272. doi.org/10.1137/0607030.
5. Li B., Ning B. Spectral analogues of Erdös’ and Moon-Moser’s theorems on Hamilton cycles. Linear and Multilinear Algebra, 2016, vol. 64, no. 11, pp. 2252–2269. doi.org/10.1080/03081087.2016.1151854.
6. Kelmans A. K. On graphs with randomly deleted edges. Acta Mathematica Academiae Scientiarum Hungaricae, 1981, vol. 37, no. 1–3, pp. 77–88. doi.org/10.1007/bf01904874.
7. Csikvari P. On a conjecture of V. Nikiforov. Discrete Mathematics, 2009, vol. 309, no. 13, pp. 4522–4526. doi. org/10.1016/j.disc.2009.02.013.
8. Brouwer A. E., Haemers W. H. Spectra of graphs. New York, Springer-Verlag, 2011. 255 p. doi.org/10.1007/978-1- 4614-1939-6.
9. Godsil C. D., Royle G. F. Algebraic graph theory. New York, Springer-Verlag, 2001. 442 p. doi.org/10.1007/978-1- 4613-0163-9.
10. Prasolov V. V. Polynomials. Moscow, Moscow Center For Continuous Mathematical Education, 2003. 336 p. (in Russian).
11. Bhattacharya A., Friedland S., Peled U. N. On the first eigenvalue of bipartite Graphs. The Electronic Journal of Combinatorics, 2008, vol. 15, pp. R144.