Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

STUDY OF THE TRANSMEMBRANE PROTEIN CD79B BY MULTIDIMENSIONAL PULSE NMR SPECTROSCOPY

Abstract

In the present work, using the cell-free expression system, we prepared the proteins CD79A/CD79B labeled by stable isotopes of carbon-13 and nitrogen-15. It is shown that target proteins are mostly localized in the pellet of the cell-free expression system, which is consistent with their membrane nature and the presence of a transmembrane domain in their structure. Physicochemical parameters of the CD79A/CD79B samples were defined to obtain the multidimensional correlation NMR spectra of high resolution. The analysis of the obtained correlation spectra shows that under experimental conditions, CD79B exists in the disordered state. The splitting of the signal from the NH-group of the side chain of single tryptophan residue indicates the presence of slow conformational transitions in this region of the polypeptide chain. The addition of the trifluoroacetic acid to the solution of CD79B in DMSO leads to the destruction of the intermolecular bonds of “protein micelles” and the formation of its monomeric form that is well detectable by NMR.

 

About the Authors

E. V. Pankratova
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk
Belarus
Junior researcher


V. V. Britikov
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk
Belarus
Researcher


S. A. Usanov
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk
Belarus
Corresponding Member, D. Sc. (Chemistry), Professor


References

1. Strauss A., Bitsch F., Cutting B., Fendrich G., Graff P., Liebetanz J., Zurini M., Jahnke W. Amino–acid-type selective isotope labeling of proteins expressed in Baculovirus-infected insect cells useful for NMR studies. Journal of biomolecular NMR, 2003, vol. 26, no. 4, pp. 367–372. doi.org/10.1023/a:1024013111478.

2. Uversky V. N. Natively unfolded proteins: a point where biology waits for physics. Protein science, 2002, vol. 11, no. 4, pp. 739–756. doi.org/10.1110/ps.4210102.

3. Dunker A. K., Garner E., Guilliot S., Romero P., Albrecht K. Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pacific Symposium on Biocomputing, 1998, vol. 3, pp. 473–484.

4. Uversky V. N., Gillespie J. R., Fink A. L. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins: Structure, Function, and Bioinformatics, 2000, vol. 41, no. 3, pp. 415–427. doi.org/10.1002/1097- 0134(20001115)41:3%3C415::aid-prot130%3E3.3.co;2-z.

5. Garner E., Cannon P., Romero P., Obradović Z., Dunker A.K. Predicting disordered regions from amino acid sequence. Genome Informatics, 1998, vol. 9, pp. 201–213.

6. Campen A., Williams R., Brown C., Meng J., Uversky V., Dunker A. TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder. Protein and Peptide letters, 2008, vol. 15, no. 9, pp. 956. doi.org/10.2174/092986608785849164.

7. Uversky V. N. A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Science, 2013, vol. 22, no. 6, pp. 693–724. doi.org/10.1002/pro.2261.

8. Obradovic Z., Peng K., Vucetic S., Radivojac P., Brown C. J., Dunker A. K. Predicting intrinsic disorder from amino acid sequence. Proteins: Structure, Function, and Genetics, 2003, vol. 53, no. S6, pp. 566–572. doi.org/10.1002/prot.10532.

9. Uversky V. N. What does it mean to be natively unfolded? European Journal of Biochemistry, 2002, vol. 269, no. 1, pp. 2–12. doi.org/10.1046/j.0014-2956.2001.02649.x.

10. Dunker A. K., Obradovic Z. The protein trinity – linking function and disorder. Nature Biotechnology, 2001, vol. 19, no. 9, pp. 805–806. doi.org/10.1038/nbt0901-805.

11. Gazumyan A., Reichlin A., Nussenzweig M. C. Igβ tyrosine residues contribute to the control of B cell receptor signaling by regulating receptor internalization. The Journal of Experimental Medicine, 2006, vol. 203, no. 7, pp. 1785–1794. doi.org/10.1084/jem.20060221.

12. Patterson H. C., Kraus M., Wang D., Shahsafaei A., Henderson J. M., Seagal J., Otipoby K. L., Thai T.-H., Rajewsky K. Cytoplasmic Igα Serine/Threonines Fine-Tune Igα Tyrosine Phosphorylation and Limit Bone Marrow Plasma Cell Formation. The Journal of Immunology, 2011, vol. 187, no. 6, pp. 2853–2858. doi.org/10.4049/jimmunol.1101143.

13. Goldsby R. A., Kindt T. J., Osborne B. A., Kuby J. Immunology. New York, W. H. Freeman and Company, 2003. 603 p.

14. Lanier L. L. NK cell recognition. Annual Review of Immunology, 2005, vol. 23, no. 1, pp. 225–274. doi.org/10.1146/ annurev.immunol.23.021704.115526.

15. Radaev S., Zhongcheng Z., Tolar P., Nguyen K., Nguyen A., Krueger P. D., Stutzman N., Pierce S., Sun P. D. Structural and functional studies of Igαβ and its assembly with the B cell antigen receptor. Structure, 2010, vol. 18, no. 8, pp. 934–943. doi.org/10.1016/j.str.2010.04.019.

16. Pedersen A., Hellberg K., Enberg J., Karlsson B. G. Rational improvement of cell-free protein synthesis. New biotechnology, 2011, vol. 28, no. 3, pp. 218–224. doi.org/10.1016/j.nbt.2010.06.015.

17. Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. Journal of Biomolecular NMR, 1995, vol. 6, no. 3, pp. 277–293. doi.org/10.1007/bf00197809.

18. Peri S., Steen H., Pandey A. GPMAW – a software tool for analyzing proteins and peptides. Trends in Biochemical Sciences, 2001, vol. 26, no. 11, pp. 687–689. doi.org/10.1016/s0968-0004(01)01954-5.

19. Chu H. L., Chen T.-H., Wu C.-Y., Yang Y.-C., Tseng S.-H., Cheng T.-M., Ho L.-P., Tsai L.-Y., Li H.-Y., Chang C.-S., Chang C.-C. Thermal stability and folding kinetics analysis of disordered protein, securin. Journal of Thermal Analysis and Calorimetry, 2014, vol. 115, no. 3, pp. 2171–2178. doi.org/10.1007/s10973-013-3598-x.

20. Keller R., Wuthrich K. Computer-aided resonance assignment (CARA). Cantina, Switzerland, Verlag Goldau, 2004. 81 p.

21. Isaksson L., Mayzel M., Saline M., Pedersen A., Rosenlöw J., Brutscher B., Karlsson B. G., Orekhov V. Y. Highly efficient NMR assignment of intrinsically disordered proteins: application to B- and T-cell receptor domains. PloS One, 2013, vol. 8, no. 5, pp. e62947. doi.org/10.1371/journal.pone.0062947.


Review

Views: 1176


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)