ELECTRON TUNNELING TO TiO2 SURFACE STATES
Abstract
Simulation of tunneling of electrons excited by the sunlight to TiO2 surface states is performed. The surface states appear due to absorption of impurities and organic compounds on the TiO2 nanocomposite in the gas environment. Interference of transmitted and reflected waves, overbarrier and reflected waves under the conditions of the complex potential relief is taken into account.
About the Authors
Tatyana N. SidorovaBelarus
Junior researcher
6, P. Browka Str., 220013
Alexander L. Danilyuk
Belarus
Ph. D. (Physics and Mathematics), Assistant Professor
6, P. Browka Str., 220013
Viktor E. Borisenko
Belarus
D. Sc. (Physics and Mathematics), Professor, Head of the Department
6, P. Browka Str., 220013
References
1. Barrera M., Pla J., Bocchi C., Migliori A. Antireflecting – passivating dielectric films on crystalline silicon solar cells for space applications. Solar Energy Materials and Solar Cells, 2008, vol. 92, no. 9, pp. 1115–1122. doi.org/10.1016/j.solmat.2008.03.021
2. Soga T. Nanostructured Materials for Solar Energy Convertion. Amsterdam, Elsevier, 2006. 595 p. doi.org/10.1016/ b978-0-444-52844-5.x5000-8
3. Brus V. V., Ilashchuk M. I., Kovalyuk Z. D., Maryanchuk P. D., Ulyanytsky K. S. Electrical and photoelectrical properties of photosensitive heterojunctions n-TiO2/p-CdTe. Semiconductor Science and Technology, 2011, vol. 26, no. 12, pp. 125006. doi.org/10.1088/0268-1242/26/12/125006
4. Brus V. V., Ilashchuk M. I., Kovalyuk Z. D., Maryanchuk P. D., Parfenyuk O. A. Surface-barrier heterojunctions TiO2/ CdZnTe. Semiconductor Science and Technology, 2013, vol. 28, no. 1, p. 015014. doi.org/10.1088/0268-1242/28/1/015014
5. Denisov N. M., Baglov A. V., Borisenko V. E., Drozdova E. V. Preparation and antibacterial properties of composite nanostructures from titanium and copper oxides. Inorganic Materials, 2016, vol. 52, no. 5, pp. 523–528. doi.org/10.1134/ s0020168516050034
6. Artemiev Yu. M., Ryabchuk V. K. Introduction in heterogenic photocatalisis. Saint-Petersburg, Saint Petersburg State University Publ., 1999. 303 p. (in Russian).
7. Linsebigler A., Lu G., Yates J. T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 1995, vol. 95, no. 3, pp. 735–758. doi.org/10.1021/cr00035a013
8. Tanaka K., Mario F., Capule V., Hisanaga T. Effect of crystallinity of TiO2 on its photocatalytic action. Chemical Physics Letters, 1991, vol. 187, no. 1–2, pp. 73–76. doi.org/10.1016/0009-2614(91)90486-s
9. Sharma B. L., Purohit R. K. Semiconductor Hetero-junctions. Oxford, Pergamon, 1974. 224 p.
10. Gritsenko D. V., Shaĭmeev S. S., Atuchin V. V., Grigor’eva T. I., Pokrovskiĭ L. D., Pchelyakov O. P., Gritsenko V. A., Aseev A. L., Lifshits V. G. Two-band conduction in TiO2. Physics of the Solid State, 2006, vol. 48, no. 2, pp. 224–228. doi. org/10.1134/s1063783406020053
11. Maslov V. P., Fedoryuk M. V. Quasi-classique approche for the equations of the quantum mechanics. Moscow, Nauka Publ., 1976. 296 p. (in Russian).
12. Panfilenok A. S., Danilyuk A. L., Borisenko V. E. Oscillations of tunnel magnetoresistance in ferromagnet-insulatorferromagnet structures. Technical Physics. The Russian Journal of Applied Physics, 2008. vol. 53, no. 4, pp. 479–484. doi. org/10.1134/s1063784208040142
13. Babikov V. V. Phase fuction method in the quantum mechanics. Moscow, Nauka Publ., 1976. 224 p. (in Russian).