Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

DISTRIBUTION OF ALGEBRAIC INTEGERS OF A GIVEN DEGREE IN THE REAL LINE

Abstract

In the article, we have obtained an asymptotic formula for the number of algebraic integers α of an arbitrary given degree n that have the height H(α) ≤ Q and lie in the interval I, as Q tends to infninity. We have proved that the error term in this formula is of the order O(Qn–1) for infinitely many intervals. We have shown that algebraic integers of the given degree n are distributed asymptotically just like algebraic numbers of the degree n – 1.

About the Author

D. U. KALIADA
Інстытут матэматыкі НАН Беларусі, Мінск
Belarus


References

1. Baker A., Schmidt W. // Proc. London Math. Soc. 1970. Vol. 21, N 3. P. 1–11.

2. Берник В. И. // Acta Arith. 1983. Vol. 42, N 3. P. 219–253.

3. Beresnevich V. // Acta Arith. 1999. Vol. 90, N 2. P. 97–112.

4. Bugeaud Y. // J. London Math. Soc. 2002. Vol. 65, N 3. P. 547–559.

5. Masser D., Vaaler J. D. // Diophantine Approximation. Developments in Mathematics. 2008. Vol. 16. P. 237–243.

6. Barroero F. // Monatshefte für Mathematik. 2013. P. 1–17.

7. Chern S.-J., Vaaler J. D. // J. Reine Angew. Math. 2001. Vol. 540. P. 1–47.

8. Ленг С. Основы диофантовой геометрии. М., 1986. – 446 с.

9. Коледа Д. В. // Весці НАН Беларусі. Сер. фіз.-мат. навук. 2013. № 3. С. 54–63.

10. Каляда Д. У. // Докл. НАН Беларуси. 2012. Т. 56, № 3. С. 28–33.

11. Коледа Д. В. // Весці НАН Беларусі. Сер. фіз.-мат. навук. 2013. № 1. С. 41–49.

12. Chela R. // J. London Math. Soc. 1963. Vol. 38. P. 183–188.

13. Davenport H. // J. London Math. Soc. 1951. Vol. 26. P. 179–183; 1964. Vol. 39. P. 580.


Review

Views: 867


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)