GENERALIZED TWO-STEP NEWTON–KANTOROVICH METHOD FOR APPROXIMATE SOLUTION OF NONLINEAR EQUATIONS WITH NON-DIFFERENTIABLE OPERATORS
Abstract
The generalized two-step Newton–Kantorovich method for approximate solution of nonlinear equations with nondifferentiable operators allowing the separation of a regular smooth component is considered. Using majorants, the convergence of this method is proved and estimates for the convergence rate are obtained.
About the Author
A. N. TANYHINA
Белорусский государственный университет, Минск
Belarus
References
1. Tanygina A. N. // Dokl. NAN Belarusi. 2011. T. 55, № 6. S. 17-22.
2. Galperin A., Waksman Z. // J. Comp. Appl. Math. 1991. Vol. 35. P. 207-215.
3. Galperin A., Waksman Z. // Numer. Funct. Anal. and Optimiz. 1994. Vol. 15, N 7-8. P. 813-858.
4. Zabreiko P. P., Tanygina A. N. // Dokl. NAN Belarusi. 2013. T. 57, № 6. S. 8-12.
5. Appel J., De Pascale E., Evkhuta N. A., Zabrejko P. P. // Math. Nachr. 1995. Vol. 172. P. 5-14.
6. Tanygina A. N. // Dokl. NAN Belarusi. 2014. T. 58, № 4. S. 5-10.
7. Zabrejko P. P., Nguen D. F. // Numer. Funct. Anal. and Optimiz. 1987. Vol. 9, N 5-6. P. 671-684.
Views: 853