GENERALIZED TWO-STEP NEWTON–KANTOROVICH METHOD FOR APPROXIMATE SOLUTION OF NONLINEAR EQUATIONS WITH NON-DIFFERENTIABLE OPERATORS
Abstract
The generalized two-step Newton–Kantorovich method for approximate solution of nonlinear equations with nondifferentiable operators allowing the separation of a regular smooth component is considered. Using majorants, the convergence of this method is proved and estimates for the convergence rate are obtained.
References
1. Таныгина А. Н. // Докл. НАН Беларуси. 2011. Т. 55, № 6. С. 17–22.
2. Galperin A., Waksman Z. // J. Comp. Appl. Math. 1991. Vol. 35. P. 207–215.
3. Galperin A., Waksman Z. // Numer. Funct. Anal. and Optimiz. 1994. Vol. 15, N 7–8. P. 813–858.
4. Забрейко П. П., Таныгина А. Н. // Докл. НАН Беларуси. 2013. Т. 57, № 6. С. 8–12.
5. Appel J., De Pascale E., Evkhuta N. A., Zabrejko P. P. // Math. Nachr. 1995. Vol. 172. P. 5–14.
6. Таныгина А. Н. // Докл. НАН Беларуси. 2014. Т. 58, № 4. С. 5–10.
7. Zabrejko P. P., Nguen D. F. // Numer. Funct. Anal. and Optimiz. 1987. Vol. 9, N 5–6. P. 671–684.