1. Baudoin F., Coutin L. Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stochastic Processes and their Applications, 2007, vol. 117, no. 5, pp. 550-574. https://doi.org/10.1016/j. spa.2006.09.004
2. Neuenkirch A., Nourdin I., Rößler A., Tindel S. Trees and asymptotic expansions for fractional stochastic differential equations. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 2009, vol. 45, no. 1, pp. 157-174. https://doi. org/10.1214/07-aihp159
3. Friz P., Hairer M. A Course on Rough Paths with an introduction to regularity structures. Springer International Publishing Switzerland, 2014. 263 p.
4. Gubinelli M. Controlling rough paths. Journal of Functional Analysis, 2004, vol. 216, no. 1, pp. 86-140. https://doi. org/10.1016/j.jfa.2004.01.002
5. Vaskouski M. M., Kachan I. V. An analogue of the Ito formula for stochastic differential equations with fractional Brownian motions having different Hurst indices greater than 1/3. Analiticheskie i chislennye metody modelirovaniya estestvenno-nauchnykh i sotsial’nykh problem [Analytical and numerical methods of modeling of natural-scientific and social problems]. Penza, 2017, pp. 12-16 (in Russian).
6. Nualart D., Rascanu A. Differential equations driven by fractional Brownian motion. Collectanea Mathematica, 2002, vol. 53, no. 1, pp. 55-81.
7. Levakov A. A. Stochastic Differential Equations. Minsk, Belarusian State University, 2009. 231 p. (in Russian) .
8. Oksendal B. Stochastic differential equations. An introduction with applications. Berlin, Heidelberg, New York, Springer-Verlag, 2003. 379 p.