Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

STRUCTURAL FEATURES OF HUMAN CYTOCHROME P450 7B1 WITH AN AMINO ACID SUBSTITUTION OF Phe470Ile

https://doi.org/10.29235/1561-8323-2018-62-4-423-431

Abstract

To study the influence of the amino acid substitution of Phe470Ile, correlating with the spastic paraplegia of type 5, on the structure of human cytochrome P450 7B1, the spatial full-atomic models of this enzyme and its mutant form were created. It was found that Phe470 does not influence directly the catalytic properties of the enzyme because of its localization far from the active site. It was shown that the residue under investigation belongs to a highly conservative region of the protein structure and can influence the CYP7B1 correct folding. In particular, the amino acid substitution of Phe470Ile increases rigidity and stability of sterol 7α-hydroxylase. This can be a reason of changes in the CYP7B1 hydroxylase activity in relation to neurosteroids.

About the Authors

Yaraslau V. Dzichenka
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Dzichenka Yaraslau Uladzimiravich – Ph. D. (Chemistry), Senior Research

5/2, Kuprevich Str., 220141, Minsk



Eugene S. Gudny
Belarusian State University
Belarus

Gudnyy Eugene Sergeevich – Student

10, Kurchatov Str., 220045, Minsk



Sergei A. Usanov
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Usanov Sergei Aleksandrovich – Corresponding Member, D. Sc. (Chemistry), Professor

5/2, Kuprevich Str., 220141, Minsk



References

1. Stiles A. R., McDonald J. G., Bauman D. R., Russell D. W. CYP7B1: one cytochrome P450, two human genetic diseases, and multiple physiological functions. Journal of Biological Chemistry, 2009, vol. 284, no. 42, pp. 28485–28489. https:// doi.org/10.1074/jbc.r109.042168

2. Wu Z., Martin K. O., Javitt N. B., Chiang J. Y. Structure and functions of human oxysterol 7alpha-hydroxylase cDNAs and gene CYP7B1. Journal of Lipid Research, 1999, vol. 40, no. 12, pp. 2195–2203.

3. Martin C., Bean R., Rose K., Habib F., Seckl J. Cyp7b1 catalyses the 7alpha-hydroxylation of dehydroepiandrosterone and 25-hydroxycholesterol in rat prostate. Biochemical Journal, 2001, vol. 355, no. 2, pp. 509–515. https://doi.org/10.1042/ bj3550509

4. Rose K. A., Stapleton G., Dott K., Kieny M. P., Best R., Schwarz M., Russell D. W., Björkhem I., Seckl J., Lathe R. Cyp7b, a novel brain cytochrome P450, catalyzes the synthesis of neurosteroids 7alpha-hydroxy dehydroepiandrosterone and 7alpha-hydroxy pregnenolone. Proceedings of the National Academy of Sciences, 1997, vol. 94, no. 10, pp. 4925–4930. https:// doi.org/10.1073/pnas.94.10.4925

5. Trap C., Nato F., Chalbot S., Kim S. B., Lafaye P., Morfin R. Immunohistochemical detection of the human cytochrome P4507B1: production of a monoclonal antibody after cDNA immunization. Journal of Neuroimmunology, 2005, vol. 159, no. 1–2, pp. 41–47. https://doi.org/10.1016/j.jneuroim.2004.09.019

6. Weihua Z., Lathe R., Warner M., Gustafsson J. A. An endocrine pathway in the prostate, ERbeta, AR, 5alpha-androstane-3beta,17beta-diol, and CYP7B1, regulates prostate growth. Proceedings of the National Academy of Sciences, 2002, vol. 99, no. 21, pp. 13589–13594. https://doi.org/10.1073/pnas.162477299

7. Tsaousidou M. K., Ouahchi K., Warner T. T., Yang Y., Simpson M. A., Laing N. G., Wilkinson P. A., Madrid R. E., Patel H., Hentati F., Patton M. A., Hentati A., Lamont P. J., Siddique T., Crosby A. H. Sequence alterations within CYP7B1 implicate defective cholesterol homeostasis in motor-neuron degeneration. American Journal of Human Genetics, 2008, vol. 82, no. 2, pp. 510–515. https://doi.org/10.1016/j.ajhg.2007.10.001

8. Setchell K. D., Schwarz M., O’Connell N. C., Lund E. G., Davis D. L., Lathe R., Thompson H. R., Weslie Tyson R., Sokol R. J., Russell D. W. Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7alpha-hydroxylase gene causes severe neonatal liver disease. Journal of Clinical Investigation, 1998, vol. 102, no. 9, pp. 1690–1703. https:// doi.org/10.1172/jci2962

9. Schüle R., Brandt E., Karle K. N., Tsaousidou M., Klebe S., Klimpe S., Auer-Grumbach M., Crosby A. H., Hübner C. A., Schöls L., Deufel T., Beetz C. Analysis of CYP7B1 in non-consanguineous cases of hereditary spastic paraplegia. Neurogenetics, 2009, vol. 10, no. 2, pp. 97–104. https://doi.org/10.1007/s10048-008-0158-9

10. Yau J. L., Rasmuson S., Andrew R., Graham M., Noble J., Olsson T., Fuchs E., Lathe R., Seckl J. R. Dehydroepiandrosterone 7-hydroxylase CYP7B: predominant expression in primate hippocampus and reduced expression in Alzheimer’s disease. Neuroscience, 2003, vol. 121, no. 2, pp. 307–314. https://doi.org/10.1016/s0306-4522(03)00438-x

11. Olsson M., Gustafsson O., Skogastierna C., Tolf A., Rietz B. D., Morfin R., Rane A., Ekström L. Regulation and expression of human CYP7B1 in prostate: overexpression of CYP7B1 during progression of prostatic adenocarcinoma. Prostate, 2007, vol. 67, no. 13, pp. 1439–1446. https://doi.org/10.1002/pros.20630

12. Dulos J., van der Vleuten M. A., Kavelaars A., Heijnen C. J., Boots A. M. CYP7B expression and activity in fibroblast-like synoviocytes from patients with rheumatoid arthritis: regulation by proinflammatory cytokines. Arthritis & Rheumatism, 2005, vol. 52, no. 3, pp. 770–778. https://doi.org/10.1002/art.20950

13. Siam A., Brancale A., Simons C. Comparative modeling of 25-hydroxycholesterol-7alphahydroxylase (CYP7B1): ligand binding and analysis of hereditary spastic paraplegia type 5 CYP7B1 mutations. Journal of Molecular Modeling, 2011, vol. 18, no. 2, pp. 441–453. https://doi.org/10.1007/s00894-011-1084-6

14. Cui Y. L., Zhang J. L., Zheng Q. C., Niu R. J., Xu Y., Zhang H. X., Sun C. C. Structural and dynamic basis of human cytochrome P450 7B1: a survey of substrate selectivity and major active site access channels. Chemistry, 2012, vol. 19, no. 2, pp. 549–557. https://doi.org/10.1002/chem.201202627

15. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008, vol. 9, no. 1, pp. 40. https://doi.org/10.1186/1471-2105-9-40

16. Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E. UCSF Chimera – a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 2004, vol. 25, no. 13, pp. 1605–1612. https://doi.org/10.1002/jcc.20084

17. Yantsevich A. V., Dichenko Y. V., MacKenzie F., Mukha D. V., Baranovsky A. V., Gilep A. A., Usanov S. A., Strushkevich N. V. Human steroid and oxysterol 7α-hydroxylase CYP7B1: substrate specificity, azole binding and misfolding of clinically relevant mutants. FEBS Journal, 2014, vol. 281, no. 6, pp. 1700–1713. https://doi.org/10.1111/febs.12733

18. Kidera A., Konishi Y., Oka M., Ooi T., Scheraga H. A. Statistical analysis of the physical properties of the 20 naturally occurring amino acids. Journal of Protein Chemistry, 1985, vol. 4, no. 1, pp. 23–55. https://doi.org/10.1007/bf01025492


Review

Views: 1136


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)