Классическое решение смешанных задач для уравнения типа Клейна–Гордона–Фока с косыми производными в граничных условиях
https://doi.org/10.29235/1561-8323-2018-62-5-531-539
Аннотация
В данной работе рассматривается смешанная задача для уравнения типа Клейна–Гордона–Фока в полуполосе с косыми производными в граничных условиях. При решении данной задачи возникают эквивалентные интегральные уравнения Вольтерры второго рода. Для полученных интегральных уравнений доказано существование единственного решения в классе дважды непрерывно дифференцируемых функций при заданной гладкости данных. С помощью метода характеристик показывается, что для гладкости решения исходной задачи необходимо и достаточно выполнения условий согласования заданных функций при их достаточной гладкости. Метод характеристик сводится к разбиению всей области решения на подобласти, в каждой из которых строятся решения подзадач с использованием начальных и граничных условий. Полученные решения затем склеиваются в общих точках, порождая условия склейки, которые и являются условиями согласования.
Данный подход позволяет строить как точные решения, так и приближенные. Точные решения могут быть найдены в том случае, если удается разрешить эквивалентные интегральные уравнения Вольтерры. В противном случае можно найти приближенное решение задачи либо в аналитическом, либо в численном виде. При этом при построении приближенного решения существенными оказываются условия согласования, которые необходимо учитывать при использовании численных методов решения задачи.
Об авторах
В. И. КорзюкБеларусь
Корзюк Виктор Иванович – академик, доктор физико-математических наук, профессор.
Ул. Сурганова, 11, 220072, Минск
И. И. Столярчук
Беларусь
Столярчук Иван Игоревич – магистр физ.-мат. наук, аспирант.
Пр. Независимости, 4, 220030, Минск
Список литературы
1. Барановская, С. Н. Смешанная задача для уравнения колебания струны с зависящей от времени косой производной в краевом условии / С. Н. Барановская, Н. И. Юрчук // Дифференциальные уравнения. – 2009. – Т. 45, № 8. – С. 1188–1191.
2. Корзюк, В. И. Классическое решение смешанной задачи для волнового уравнения с интегральным условием / В. И. Корзюк, И. И. Столярчук // Докл. Нац. акад. наук Беларуси. – 2016. – Т. 60, № 6. – С. 22–27.
3. Корзюк, В. И. Классическое решение первой смешанной задачи для уравнения Клейна–Гордона–Фока в полуполосе / В. И. Корзюк, И. И. Столярчук // Дифференциальные уравнения. – 2014. – Т. 50, № 8. – С. 1105–1117.
4. Михлин, С. Г. Курс математической физики / С. Г. Михлин. – Москва: Наука, 1968. – 576 с.
5. Корзюк, В. И. Классическое решение смешанной задачи для уравнения Клейна–Гордона–Фока с нелокальными условиями / В. И. Корзюк, И. И. Столярчук // Тр. Ин-та математики НАН Беларуси. – 2018. – Т. 26, № 1. – С. 56–72.
6. Корзюк, В. И. Классическое решение смешанной задачи для уравнения Клейна–Гордона–Фока с нелокальными условиями / В. И. Корзюк, И. И. Столярчук // Докл. Нац. акад. наук Беларуси. – 2017. – Т. 61, № 6. – С. 20–27.