Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Effect of the Fermi level position on the annealing characteristic of interstitial carbon defect in silicon

https://doi.org/10.29235/1561-8323-2018-62-5-540-545

Abstract

We present experimental results showing that the migration ability of interstitial carbon atom (Сi) in silicon depends noticeably on its charge state. The experimental results were obtained from the analysis of deep level transient spectra in n+–p diodes subjected to irradiation with 4–6 MeV electrons or α-particles at T < 273 k and subsequent heat-treatments in the temperature range 280–330 k under reverse bias and without it. It has been found that in the positive charge state the Сi migration energy is 0.88 ± 0.02 eV, while in the neutral charge state it is lowered down to 0.73–0.74 eV.

About the Authors

F. P. Korshunov
Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus

Korshunov Fedor Pavlovich – Corresponding Member, D. Sc. (Engineering), Professor, Chief researcher.

19, P. Brovka Str., 220072, Minsk



S. В. Lastovskii
Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus

Lastovskii Stanislav Bronislavovich – Ph. D. (Physics and Mathematics), Head of the laboratory.

19, P. Brov ka Str., 220072, Minsk



H. S. Yakushevich
Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus

Yakushevich Hanna Sergeevna – Junior researcher.

19, P. Brovka Str., 220072, Minsk



V. P. Markevich
Manchester University
United Kingdom

Markevich Vladimir Pavlovich – Ph. D. (Physics and Mathematics), Researcher.

Sackville Str., Manchester M139Pl



L. I. Murin
Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus

Murin Leonid Ivanovich – Ph. D. (Physics and Mathematics), leading Researcher.

19, P. Brovka Str., 220072, Minsk



References

1. Davies G., Newman R. C. Carbon in monocrystalline silicon. Moss T. S., Mahajan S., eds. Handbook on semiconductors. Amsterdam, 1994, vol. 3, pp. 1557-1643. https://doi.org/10.1002/cvde.19960020108

2. Makarenko L. F., Moll M., Korshunov F. P., Lastovski S. B. Reactions of interstitial carbon with impurities in silicon particle detectors. Journal of Applied Physics, 2007. vol. 101, no. 11, pp. 113537(1-6). https://doi.org/10.1063/L2745328

3. Bean A. R., Newman R. C. Low temperature electron irradiation of silicon containing carbon. Solid State Communications, 1970, vol. 8, no. 3, pp. 175-177. https://doi.org/10.1016/0038-1098(70)90074-8

4. Watkins G. D., Brower K. L. EPR observation of the isolated interstitial carbon atom in silicon. Physical Review Letters, 1976, vol. 36, no. 22, pp. 1329-1332. https://doi.org/10.1103/physrevlett.36.1329

5. Song L. W., Watkins G. D. EPR identification of the single-acceptor state of interstitial carbon in silicon. Physical Review B, 1990, Vol. 42, no. 9, pp. 5759-5764. https://doi.org/10.1103/physrevb.42.5759

6. Woolley R. A., Woolley R., Lightowlers E. C., Tipping A. K., Claybourn M., Newman R. C. Electronic and vibrational absorption of interstitial carbon in silicon. Materials Science Forum, 1986, vol. 10-12, pp. 929-934. https://doi.org/10.4028/ www.scientific.net/msf.10-12.929

7. Thonke K., Teschner A., Sauer R. New photoluminescence defect spectra in silicon irradiated at 100 K: observation of interstitial carbon. Solid State Communications, 1987, vol. 61, no. 4, pp. 241-244. https://doi.org/10.1016/0038-1098(87)91010-6

8. Lee Y. H., Cheng L. J., Gerson J. D., Mooney P. M., Corbett J. W. Carbon interstitial in electron-irradiated silicon. Solid State Communications, 1977, vol. 21, no. 1, pp. 109-111. https://doi.org/10.1016/0038-1098(77)91489-2

9. Kimerling L. C., Blood P., Gibson W. M. Defect states in proton-bombarded silicon at T < 300 K. Albany J. H. (ed.). Defects and radiation effects in semiconductors. London, Bristol, Institute of Physics, 1979, ser. 46, pp. 273-280.

10. Djerassi H., Merlo-Flores J., Messier J. Effects of 60Co y-rays on high resistivity p-type Si. Journal of Applied Physics, 1966, vol. 37, no. 12, pp. 4510-4516. https://doi.org/10.1063/L1708071

11. Litvinko A. G., Makarenko L. F., Murin L. I., Tkachev V. D. Electrically active interstitial defects in irradiated n-sili-con. Fizika i tekhnika poluprovodnikov = Semiconductors, 1980, vol. 14, no. 4, pp. 776-780 (in Russian).

12. Gritsenko M. I., Kobzar O. O., Pomozov Y. V., Sosnin M. G., Khirunenko L. I. Efficiency of interaction of interstitial carbon with oxygen, tin, and substitution carbon in irradiated silicon. Ukrainian Journal of Physics, 2010, vol. 55, no. 2, pp. 222-227.

13. Brabant J. C., Pugnet M., Barbolla J., Brousseau M. Studies of defects introduced by electron irradiation at 4.2 K in p-silicon by thermally stimulated capacitance technique. Journal of Applied Physics, 1976, vol. 47, no. 11, pp. 4809-4813. https://doi.org/10.1063/L322522

14. Tipping A. K., Newman R. C. The diffusion coefficient of interstitial carbon in silicon. Semiconductor Science and Technology, 1987, vol. 2, no. 5, pp. 315-317. https://doi.org/10.1088/0268-1242/2/5/013

15. Green M. A. Intrinsic concentration, effective densities of states, and effective mass in silicon. Journal of Applied Physics, 1990, vol. 67, no. 6, pp. 2944-2954. https://doi.org/10.1063/L345414


Review

Views: 933


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)