Photo- and electroluminescence of oxide-nitride-oxide-silicon structures for silicon-based optoelectronics
https://doi.org/10.29235/1561-8323-2018-62-5-546-554
Abstract
Oxide-nitride-oxide-silicon (SiO2/SiN0.9/SiO2/Si) structures have been fabricated by chemical vapor deposition. The elemental composition and light emission properties of “SiO2/SiN0.9/SiO2/Si” structures have been studied using Rutherford backscattering spectroscopy (RBS), photo- and electroluminescence (Pl, El). The RBS measurements has shown the presence of an intermediate silicon oxynitride layers at the SiO2–SiN0.9 interfaces.
It has been shown that the photoluminescence of the SiO2/SiN0.9/SiO2/Si structure is due to the emission of a SiN0.9 layer, and the electroluminescence is attributed to the emission of silicon oxide and oxynitride layers. A broad intense band with a maximum at 1.9 eV dominates the Pl spectrum. This band attributed to the radiative recombination of excited carriers between the band tail states of the SiN0.9 layer. The origin of the less intense Pl band at 2.8 eV is associated with the presence of nitrogen defects in the silicon nitride.
El was excited in the electrolyte-dielectric-semiconductor system. The electric field strength in the SiO2 layers reached 7–8 MV/cm and exceeded this parameter in nitride layer nearly four times. The electrons accelerating in electric field of 7–8 MV/cm could heat up to energies more than 5 eV. It is sufficient for the excitation of luminescence centres in the silicon oxide and oxynitride layers. The SiO2/SiN0.9/SiO2/Si composition El bands with quantum energies of 1.9 and 2.3 eV are related to the presence of silanol groups (Si–OH) and three-coordinated silicon atoms (≡Si•) in the silicon oxide layers. The El band with an energy of 2.7 eV is attributed to the radiative relaxation of silylene (O2=Si:) centers in the silicon oxynitride regions. It is observed the least reduction of this band intensity under the influence of strong electric fields after a charge flow of 1–3 C/cm2.
About the Authors
I. A. RomanovBelarus
Romanov Ivan Alexandrovich – Postgraduate student.
1, Kurchatov Str., 220108, Minsk
L. A. Vlasukova
Belarus
Vlasukova Liudmila Alexandrovna – Ph. D. (Physics and Mathematics), Head of the laboratory.
5, Kurchatov Str., 220108, Minsk
F. F. Komarov
Belarus
Komarov Fadei Fadeevich – Corresponding Member, D. Sc. (Physics and Mathematics), Professor, Head of the laboratory.
7, Kurchatov Str., 220108, Minsk
I. N. Parkhomenko
Belarus
Parkhomenko Irina Nikolaevna – Ph. D. (Physics and Mathematics), Senior researcher.
5, Kurchatov Str., 220108, Minsk
N. S. Kovalchuk
Belarus
Kovalchuk Natalia Stanislavovna – Ph. D. (Engineering), Deputy chief engineer.
12la, Kazinets Str., 220108, Minsk
M. A. Mohovikov
Belarus
Makhavikou Maxim Alexandrovich – Junior researcher.
7, Kurchatov Str., 220108, Minsk
A. V. Mudryi
Belarus
Mudryi Alexander Victorovich – Ph. D. (Physics and Mathematics), Chief researcher.
19, P. Brovka Str., 220072, Minsk
O. V. Milchanin
Belarus
Milchanin Oleg Vladimirovich – Senior researcher.
7, Kurchatov Str., 220108, Minsk
References
1. Jiang X., Ma Z., Yang H., Yu J., Wang W., Zhang W., Li W., Xu J., Xu L., Chen K., Huang X., Feng D. Nanocrystalline Si pathway induced unipolar resistive switching behavior from annealed Si-rich SiNx/SiNy multilayers. Journal of Applied Physics, 2014, vol. 116, no. 12, p. 123705 (5 p.). https://doi.org/10.1063/L4896552
2. Belyi V. I., Vasilyeva L. L., Gritsenko V. A. Silicon nitride in electronics. Novosibirsk, Nauka Publ., 1982. 200 p. (in Russian).
3. Dai D., Wang Z., Bauters J. F., Tien M.-C., Heck M. J. R., Blumenthal D. J., Bowers J. E. Low-loss Si3N4 arrayed-waveguide grating (de) multiplexer using nano-core optical waveguides. Optics express, 2011, vol. 19, no. 15, pp. 1413014136. https://doi.org/10.1364/oe.19.014130
4. Dyakov S. A., Zhigunov D. M., Hartel A., Zacharias M., Perova T. S., Timoshenko V. Yu. Enhancement of photoluminescence signal from ultrathin layers with silicon nanocrystals. Applied Physics Letters, 2012, vol. 100, no. 6, pp. 061908 (4 p.). https://doi.org/10.1063/L3682537
5. Kistner J., Chen X., Weng Y., Strunk H. P., Schubert M. B., Werner J. H. Photoluminescence from silicon nitride - no quantum effect. Journal of Applied Physics, 2011, vol. 110, no. 2, p. 023520 (5 p.). https://doi.org/10.1063/1.3607975
6. Cen Z. H., Chen T. P., Ding L., Liu Y., Wong J. I., Yang M., Liu Z., Goh W. P., Zhu F. R., Fung S. Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions. Applied Physics Letters, 2009, vol. 94, no. 4, p. 041102 (3 p.). https://doi.org/10.1063/L3068002
7. Baraban A. P., Bulavinov V. V., Konorov P. P. Electronics of SiO2 layers on silicon. Leningrad, 1988. 304 p. (in Russian).
8. Baraban A. P., Egorov D. V., Askinazi A. Y., Miloglyadova L. V. Electroluminescence of Si-SiO2-Si3N4 structures. Technical Physics Letters, 2002, vol. 28, no. 12, pp. 978-980. https://doi.org/10.1134/L1535507
9. Skuja L. The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2. Journal of Non-Crystalline Solids, 1994, vol. 179, pp. 51-69. https://doi.org/10.1016/0022-3093(94)90684-x
10. Baraban A. P., Konorov P. P., Malyavka L. V., Troshikhin A. G. Electroluminescence of ion-implanted Si-SiO2 structures. Technical Physics, 2000, vol. 45, no. 8, pp. 1042-1044. https://doi.org/10.1134/L1307014
11. Liao L. S., Bao X. M., Zheng X. Q., Li N. S., Min N. B. Blue luminescence from Si+-implanted SiO2 films thermally grown on crystalline silicon. Applied Physics Letters, 1996, vol. 68, no. 6, pp. 850-852. https://doi.org/10.1063/1.116554
12. Baraban A. P., Egorov D. V., Petrov Y. V., Miloglyadova L. V. The effect of annealing on the electroluminescence of SiO2 layers with excess silicon. Technical Physics Letters, 2004, vol. 30, no. 2, pp. 85-87. https://doi.org/10.1134/L1666947
13. Kumar Bommali R., Preet Singh S., Rai S., Mishra P., Sekhar B. R., Vijaya Prakash G., Srivastava P. Excitation dependent photoluminescence study of Si-rich a-SiN*:H thin films. Journal of Applied Physics, 2012, vol. 112, no. 12, p. 123518 (6 p.). https://doi.org/10.1063/L4770375
14. Nasyrov K. A., Gritsenko V. A. Charge transport in dielectrics via tunneling between traps. Journal of Applied Physics, 2011, vol. 109, no. 9, p. 093705 (5 p.). https://doi.org/10.1063/L3587452
15. Brown George A., Robinette W. C., Carlson H. G. Electrical Characteristics of Silicon Nitride Films Prepared by Silane-Ammonia Reaction. Journal of The Electrochemical Society, 1968, vol. 115, no. 9, pp. 948-955. https://doi.org/10.1149/1.2411484