Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Photo- and electroluminescence of oxide-nitride-oxide-silicon structures for silicon-based optoelectronics

https://doi.org/10.29235/1561-8323-2018-62-5-546-554

Abstract

Oxide-nitride-oxide-silicon (SiO2/SiN0.9/SiO2/Si) structures have been fabricated by chemical vapor deposition. The elemental composition and light emission properties of “SiO2/SiN0.9/SiO2/Si” structures have been studied using Rutherford backscattering spectroscopy (RBS), photo- and electroluminescence (Pl, El). The RBS measurements has shown the presence of an intermediate silicon oxynitride layers at the SiO2–SiN0.9 interfaces.

It has been shown that the photoluminescence of the SiO2/SiN0.9/SiO2/Si structure is due to the emission of a SiN0.9 layer, and the electroluminescence is attributed to the emission of silicon oxide and oxynitride layers. A broad intense band with a maximum at 1.9 eV dominates the Pl spectrum. This band attributed to the radiative recombination of excited carriers between the band tail states of the SiN0.9 layer. The origin of the less intense Pl band at 2.8 eV is associated with the presence  of nitrogen defects in the silicon nitride.

El was excited in the electrolyte-dielectric-semiconductor system. The electric field strength in the SiO2 layers reached 7–8 MV/cm and exceeded this parameter in nitride layer nearly four times. The electrons accelerating in electric field of 7–8 MV/cm could heat up to energies more than 5 eV. It is sufficient for the excitation of luminescence centres in the silicon oxide and oxynitride layers. The SiO2/SiN0.9/SiO2/Si composition El bands with quantum energies of 1.9 and 2.3 eV are related to the presence of silanol groups (Si–OH) and three-coordinated silicon atoms (≡Si•) in the silicon oxide layers. The El band with an energy of 2.7 eV is attributed to the radiative relaxation of silylene (O2=Si:) centers in the silicon oxynitride regions. It is observed the least reduction of this band intensity under the influence of strong electric fields after a charge flow  of 1–3 C/cm2.

About the Authors

I. A. Romanov
Belarusian State University
Belarus

Romanov Ivan Alexandrovich – Postgraduate student.

1, Kurchatov Str., 220108, Minsk



L. A. Vlasukova
Belarusian State University
Belarus

Vlasukova Liudmila Alexandrovna – Ph. D. (Physics and Mathematics), Head of the laboratory.

5, Kurchatov Str., 220108, Minsk



F. F. Komarov
A.N. Sevchenko Institute of Applied Physics Problems of the Belarusian Slate University
Belarus

Komarov Fadei Fadeevich – Corresponding Member, D. Sc. (Physics and Mathematics), Professor, Head of the laboratory.

7, Kurchatov Str., 220108, Minsk



I. N. Parkhomenko
Belarusian State University
Belarus

Parkhomenko Irina Nikolaevna – Ph. D. (Physics and Mathematics), Senior researcher.

5, Kurchatov Str., 220108, Minsk



N. S. Kovalchuk
Integral, Joint Stock Company
Belarus

Kovalchuk Natalia Stanislavovna – Ph. D. (Engineering), Deputy chief engineer.

12la, Kazinets Str., 220108, Minsk



M. A. Mohovikov
A.N. Sevchenko Institute of Applied Physics Problems of the Belarusian Slate University
Belarus

Makhavikou Maxim Alexandrovich – Junior researcher.

7, Kurchatov Str., 220108, Minsk



A. V. Mudryi
Scientific and Practical Materials Research Center of the National Academy of Sciences of Belarus
Belarus

Mudryi Alexander Victorovich – Ph. D. (Physics and Mathematics), Chief researcher.

19, P. Brovka Str., 220072, Minsk



O. V. Milchanin
A.N. Sevchenko Institute of Applied Physics Problems of the Belarusian Slate University
Belarus

Milchanin Oleg Vladimirovich – Senior researcher.

7, Kurchatov Str., 220108, Minsk



References

1. Jiang X., Ma Z., Yang H., Yu J., Wang W., Zhang W., Li W., Xu J., Xu L., Chen K., Huang X., Feng D. Nanocrystalline Si pathway induced unipolar resistive switching behavior from annealed Si-rich SiNx/SiNy multilayers. Journal of Applied Physics, 2014, vol. 116, no. 12, p. 123705 (5 p.). https://doi.org/10.1063/L4896552

2. Belyi V. I., Vasilyeva L. L., Gritsenko V. A. Silicon nitride in electronics. Novosibirsk, Nauka Publ., 1982. 200 p. (in Russian).

3. Dai D., Wang Z., Bauters J. F., Tien M.-C., Heck M. J. R., Blumenthal D. J., Bowers J. E. Low-loss Si3N4 arrayed-waveguide grating (de) multiplexer using nano-core optical waveguides. Optics express, 2011, vol. 19, no. 15, pp. 1413014136. https://doi.org/10.1364/oe.19.014130

4. Dyakov S. A., Zhigunov D. M., Hartel A., Zacharias M., Perova T. S., Timoshenko V. Yu. Enhancement of photoluminescence signal from ultrathin layers with silicon nanocrystals. Applied Physics Letters, 2012, vol. 100, no. 6, pp. 061908 (4 p.). https://doi.org/10.1063/L3682537

5. Kistner J., Chen X., Weng Y., Strunk H. P., Schubert M. B., Werner J. H. Photoluminescence from silicon nitride - no quantum effect. Journal of Applied Physics, 2011, vol. 110, no. 2, p. 023520 (5 p.). https://doi.org/10.1063/1.3607975

6. Cen Z. H., Chen T. P., Ding L., Liu Y., Wong J. I., Yang M., Liu Z., Goh W. P., Zhu F. R., Fung S. Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions. Applied Physics Letters, 2009, vol. 94, no. 4, p. 041102 (3 p.). https://doi.org/10.1063/L3068002

7. Baraban A. P., Bulavinov V. V., Konorov P. P. Electronics of SiO2 layers on silicon. Leningrad, 1988. 304 p. (in Russian).

8. Baraban A. P., Egorov D. V., Askinazi A. Y., Miloglyadova L. V. Electroluminescence of Si-SiO2-Si3N4 structures. Technical Physics Letters, 2002, vol. 28, no. 12, pp. 978-980. https://doi.org/10.1134/L1535507

9. Skuja L. The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2. Journal of Non-Crystalline Solids, 1994, vol. 179, pp. 51-69. https://doi.org/10.1016/0022-3093(94)90684-x

10. Baraban A. P., Konorov P. P., Malyavka L. V., Troshikhin A. G. Electroluminescence of ion-implanted Si-SiO2 structures. Technical Physics, 2000, vol. 45, no. 8, pp. 1042-1044. https://doi.org/10.1134/L1307014

11. Liao L. S., Bao X. M., Zheng X. Q., Li N. S., Min N. B. Blue luminescence from Si+-implanted SiO2 films thermally grown on crystalline silicon. Applied Physics Letters, 1996, vol. 68, no. 6, pp. 850-852. https://doi.org/10.1063/1.116554

12. Baraban A. P., Egorov D. V., Petrov Y. V., Miloglyadova L. V. The effect of annealing on the electroluminescence of SiO2 layers with excess silicon. Technical Physics Letters, 2004, vol. 30, no. 2, pp. 85-87. https://doi.org/10.1134/L1666947

13. Kumar Bommali R., Preet Singh S., Rai S., Mishra P., Sekhar B. R., Vijaya Prakash G., Srivastava P. Excitation dependent photoluminescence study of Si-rich a-SiN*:H thin films. Journal of Applied Physics, 2012, vol. 112, no. 12, p. 123518 (6 p.). https://doi.org/10.1063/L4770375

14. Nasyrov K. A., Gritsenko V. A. Charge transport in dielectrics via tunneling between traps. Journal of Applied Physics, 2011, vol. 109, no. 9, p. 093705 (5 p.). https://doi.org/10.1063/L3587452

15. Brown George A., Robinette W. C., Carlson H. G. Electrical Characteristics of Silicon Nitride Films Prepared by Silane-Ammonia Reaction. Journal of The Electrochemical Society, 1968, vol. 115, no. 9, pp. 948-955. https://doi.org/10.1149/1.2411484


Review

Views: 1207


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)