Structure, magnetic and magnetic transport properties of layered cobaltite Sr0.9Y0.1CoO2.63
https://doi.org/10.29235/1561-8323-2018-62-5-555-562
Abstract
The structure, magnetic and magnetotransport properties of perovskite Sr0.9Y0.1CoO2.63 are studied. It is shown that the sample is structurally two-phase. The main phase has a tetragonal-distorted unit cell and is described by the spatial group I4/mmm. The broadening of the reflexes with indexes corresponding to a doubling of the parameter from the unit cell indicates that there is no strict translational symmetry along the с-axis. The presence of a broadened superstructural reflex observed at small angles on X-ray diffraction patterns at temperatures below 400 K is due to the monoclinic phase, whose content is much smaller than the tetragonal phase. Spontaneous magnetization appears during the formation of the monoclinic phase. The magnetic structure is predominantly an antiferromagnetic G-type structure with magnetic moments of 1.5µB in the layers of CoO6 octahedra and 2µB in the anion-deficient CoO4+γ layers. The electrical conductivity of Sr0.9Y0.1CoO2.63 has a semiconductor in character. The magnetoresistance reaches 57 % in a field of 14 T at a temperature of 5 K and decreases strongly with increasing temperature.
About the Authors
M. О. TroyanchukBelarus
Troyanchuk Igor Olegovich – Corresponding Member, D. Sc. (Physics and Mathematics), Professor, Head of the Laboratory.
19, P. Brovka Str., 220072, Minsk
M. V. Bushinsky
Belarus
Bushinsky Maxim Vladislavovich – Ph. D. (Physics and Mathematics).
19, P. Brovka Str., 220072, Minsk
References
1. Ivanova N. B., 0vchinnikov S. G., Kazak N. V., Korshunov M. M., Eremin I. M. Specific features of spin, charge, and orbital ordering in cobaltites. Physics-Uspekhi, 2009, vol. 52, no. 8, pp. 789-810. https://doi.org/10.3367/ufne.0179.200908b.0837
2. Maignan A., Martin C., Pelloquin D., Nguyen N., Raveau B. Structural and Magnetic Studies of 0rdered 0xygen-De-ficient Perovskites LnBaCo205+5, Closely Related to the “112” Structure. Journal Solid State Chemie, 1999, vol. 142, pp. 247260. https://doi.org/10.1006/jssc.1998.7934
3. Fuchs D., Pinta C., Schwarz T., Schweiss P., Nagel P., Schuppler S., Schneider R., Merz M., Roth G., Lohneysen H. Ferromagnetic order in epitaxially strained LaCoO3 thin films. Physical Review B, 2007, vol. 75, no. 14, pp. 144402-1-144402-5. https://doi.org/10.1103/physrevb.75.144402
4. Long Y., Kaneko Y., Ishiwata Sh., Taguchi Y., Tokura Y. Synthesis of cubic SrCoO3 single crystal and its anisotropic magnetic and transport properties. Journal of Physics: Condensed Matter, 2011. vol. 23, no. 24, pp. 245601-1-245601-6. https://doi.org/10.1088/0953-8984/23/24/245601
5. Munoz A., De la Calle C., Alonso J. A., Botta P. M., Pardo V., Baldomir D., Rivas J. Crystallographic and magnetic structure of SrCoO2 5 brownmillerite: Neutron study coupled with band-structure calculations. Physical Review B, 2008, vol. 78, no. 5, pp. 054404-1-054404-8. https://doi.org/10.1103/physrevb.78.054404
6. James M., Cassidy D., Wilson K. F., Horvat J., Withers R. L. Oxygen vacancy ordering and magnetism in the rare earth stabilised perovskite form of “SrCoO3-5”. Solid State Sciences, 2004, vol. 6, no. 7, pp. 655-662. https://doi.org/10.1016/j.solid-statesciences.2003.03.001
7. Troyanchuk I. O., Karpinsky D. V., Chobot A. N., Dobryanskii V. M., Chobot G. M., Sazonov A. P. Magnetic transformations in the Sr078Y0 22Co1-iFeiO3- system with a perovskite structure. Journal of Experimental and Theoretical Physics, 2009, vol. 108, no. . 3, pp. 428-43*4. https://doi.org/10.1134/s1063776109030078
8. Ishiwata S., Kobayashi W., Terasaki I., Kato K., Takata M. Structure-property relationship in the ordered-perovskite-related oxide Sr312Er088Co4O105. Physical Review B, 2007, vol. 75, no. 22, pp. 220406-1-220406-4. https://doi.org/10.1103/physrevb.75.220406
9. Troyanchuk I. O., Bushinsky M. V., Dobryanskii V. M., Pushkarev N. V. First-order magnetic phase transition in layered Sr3YCo4O10 5 + 5-type cobaltites. Journal of Experimental and Theoretical Physics Letters, 2012, vol. 94, no. 12, pp. 849-852. https://doi.org/10.1134/s002136401124009x
10. Troyanchuk I. O., Kasper N. V., Khalyavin D. D., Szymczak H., Szymczak R., Baran M. Phase Transitions in the Gd05Ba05CoO3 Perovskite. Physical Review Letters, 1998, vol. 80, no. 15, pp. 3380-3383. https://doi.org/10.1103/physrev-lett.80.3380
11. Terasaki I., Shibasaki S., Yoshida S., Kobayashi W. Spin State Control of the Perovskite Rh/Co Oxides. Materials, 2010, vol. 3, no. 2, pp. 786-799. https://doi.org/10.3390/ma3020786
12. Nakao H., Murata T., Bizen D., Murakami Y., Ohoyama K., Yamada K., Ishiwata S., Kobayashi W., Terasaki I. Orbital Ordering of Intermediate-Spin State of Co3+ in Sr3YCo4O105. Journal of the Physical Society of Japan, 2011, vol. 80, no. 2, pp. 023711-1-023711-4. https://doi.org/10.1143/jpsj.80.023711
13. Khalyavin D. D., Chapon L. C., Suard E., Parker J. E., Thompson S. P., Yaremchenko A. A., Kharton V. V. Complex room-temperature ferrimagnetism induced by zigzag stripes of oxygen vacancies in Sr3YCo4O10+5. Physical Review B, 2011, vol. 83, no. 14, pp. 140403-1-140403-4. https://doi.org/10.1103/physrevb.83.140403
14. Bettis J. L., Xiang H., Whangbo M.-H. Origin of the Room-Temperature Ferromagnetism in Sr3YCo4O10+5 (0.5 < 5 < 1.0): Formation of Ferromagnetic Spin Bags in the Oxygen-Rich Perovskite Layers. Chemistry of Materials, 2012, vol. 24, no. 16, pp. 3117-3119. https://doi.org/10.1021/cm302007q
15. Roisnel T., Rodriquez-Carvajal J. WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis. Materials Science Forum, 2001, vol. 378-381, pp. 118-123. https://doi.org/10.4028/www.scientific.net/msf.378-381.118