Molecular dynamics for structural complexes of potential HIV-1 inhibitors with the viral envelope gp120 protein
https://doi.org/10.29235/1561-8323-2018-62-5-576-584
Abstract
Molecular dynamics simulations for the structural complexes of potential HIV-1 inhibitors with the viral envelope gp120 protein were carried out. Free energies of the formation of these supramolecular structures and contributions of individual amino-acid residues of gp120 to the enthalpy binding were calculated. The residues of gp120 critical for interactions with the ligands were identified. Based on the data obtained, five compounds promising for synthesis and testing for antiviral activity were selected. It is suggested that these compounds may be successfully used in the design of novel, potent and broad anti-HIV drugs.
About the Authors
I. A. KashynBelarus
Kashyn Ivan Aleksandrovich - Ph. D. (Chemistry), Senior researcher.
6, Surganov Str., 220072, Minsk
G. I. Nikolaev
Belarus
Nikolaev Gregory Igorevich - Postgraduate student.
6, Surganov Str., 220072, Minsk
M. A. Tuzikov
Belarus
Tuzikov Alexander Vasilevich - Corresponding Member, D. Sc. (Physics and Mathematics), Professor, Director.
6, Surganov Str., 220072, Minsk
A. M. Andrianov
Belarus
Andrianov Alexander Mikhailovich - D. Sc. (Chemistry), Chief researcher.
5/2, Kuprevich Str., 220141, Minsk
References
1. Wang H.-B., Mo Q.-H., Yang Z. J. HIV vaccine research: The challenge and the way forward. Journal of Immunology Research, 2015, vol. 2015, article 503978. https://doi.org/10.1155/2015/503978
2. Kumari G., Singh R. K. Highly active antiretroviral therapy for treatment of HIV/AIDS patients: current status and future prospects and the Indian scenario. HIV & AIDS Review, 2012, vol. 11, no. 1, pp. 5-14. https://doi.org/10.1016/j.hivar.2012.02.003
3. Corti D., Lanzavecchia A. Broadly neutralizing antiviral antibodies. Annual Review of Immunology, 2013, vol. 31, no. 1, pp. 705-742. https://doi.org/10.1146/annurev-immunol-032712-095916
4. Mann J. K., Ndung’u T. HIV-1 vaccine immunogen design strategies. Virology Journal, 2015, vol. 12, no. 1, pp. 3. https://doi.org/10.1186/s12985-014-0221-0
5. Li W., Lu L., Li W., Jiang S. Small-molecule HIV-1 entry inhibitors targeting gp120 and gp41: a patent review (20102015). Expert Opinion on Therapeutic Patents, 2017, vol. 27, no. 6, pp. 707-719. https://doi.org/10.1080/13543776.2017.1281249
6. Wilen C. B., Tilton J. S., Doms R. W. HIV: Cell binding and entry. Cold Spring Harbor Perspectives in Medicine, 2012, vol. 2, no. 8, pp. a006866. https://doi.org/10.1101/cshperspect.a006866
7. Sliwoski G., Kothiwale S., Meiler J., Lowe E.W. Jr. Computational methods in drug discovery. Pharmacological Reviews, 2014, vol. 66, no. 1, pp. 334-395. https://doi.org/10.1124/pr.112.007336
8. Andrianov A. M., Kashyn I. A., Nikolaev G. I., Tuzikov A. V. In silico design and evaluation of the potential activity of novel HIV-1 inhibitors - mimetics of the primary receptor CD4 of the viral envelope gp120 protein. Doklady Natsional ’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2017, vol. 61, no. 3, pp. 47-57 (in Russian).
9. Case D. A. AMBER 11. San Francisco, University California, 2010. 296 p.
10. Miller B. R., McGee T. D. Jr., Swails J. M., Homeyer N., Gohlke H., Roitberg A. E. MMPBSA.py: An efficient program for end -state free energy calculations. Journal of Chemical Theory and Computation, 2012, vol. 8, no. 9, pp. 33143321. https://doi.org/10.1021/ct300418h
11. Curreli F., Kwon Y. D., Zhang H., Scacalossi D., Belov D. S., Tikhonov A. A., Andreev I. A., Altieri A., Kurkin A. V., Kwong P. D., Debnath A. K. Structure-based design of a small molecule CD4-antagonist with broad spectrum anti-HIV-1 activity. Journal of Medicinal Chemistry, 2015, vol. 58, no. 17, pp. 6909-6927. https://doi.org/10.1021/acs.jmedchem.5b00709
12. Myszka D. G., Sweet R. W., Hensley P., Brigham-Burke M., Kwong P. D., Hendrickson W. A., Wyatt R., Sodroski J., Doyle M. L. Energetics of the HIV gp120-CD4 binding reaction. Proceedings of the National Academy of Sciences, 2000, vol. 97, no. 16, pp. 9026-9031. https://doi.org/10.1073/pnas.97.16.9026
13. Kwong P. D., Wyatt R., Robinson J., Sweet R. W., Sodroski J., Hendrickson W. A. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature, 1998, vol. 393, no. 6686, pp. 648-659. https://doi.org/10.1038/31405
14. Lipinski C. A., Lombardo F., Dominy B. W., Feeney P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 2001, vol. 46, no. 1-3, pp. 3-26. https://doi.org/10.1016/s0169-409x(00)00129-0
15. Brase S., Banert K. Organic Azides: Syntheses and applications. Wiley, 2009. 507 p. https://doi.org/10.1002/9780470682517