Analysis of the genome of the bacteria Bacillus amyloliquefaciens BIM B-439D
https://doi.org/10.29235/1561-8323-2018-62-5-592-600
Abstract
According to the results of the analysis of the complete nucleotide sequence of B. amyloliquefaciens subsp. plantarum BIM B-439D, it is established that the genome of the strain is unique and is represented by a single ring chromosome with a size of 3978134 base pair containing 46.5 % G/C-pairs. The key genetic loci determining synthesis of antimicro-bic metabolites are defined: lipopeptides (surfactin, fengycin, bacillomycin D), dipeptide (bacilysin), siderophor (bacillibac-tin), polyketide antibiotics (difficidin and oxydifficidin, bacillaene and macrolactin), bacteriocin (amylocyclicin) and peptide/ polyketide (putative - tyrocidin), restriction-modification systems and mobile genetic elements (IS-elements and prophages) are characterized. The identified features in the organization and localization of individual genetic determinants (for example, intact prophage of 37558 bp) can be used as reliable molecular genetic markers for fast identification of the strain when it is used commercially. The complete nucleotide sequence of the genome can serve as the basis for a detailed functional analysis of the practically significant properties of the microorganisms of the Bacillus group.
About the Authors
M. A. TitokBelarus
TitokMarina Alekseevna - D. Sc. (Biology), Professor, Chief researcher.
2, Kuprevich Str., 220141, Minsk
L. N. Valentovich
Belarus
Valentovich Leonid Nikolaevich - Ph. D. (Biology). Associate professor, Head of the Laboratory.
2, Kuprevich Str., 220141, Minsk
A. V. Berezhnaya
Belarus
Berezhnaya Anastasiya Valer’evna - Researcher.
2, Kuprevich Str., 220141, MinskE. I. Kolomiets
Belarus
Kolomiets Emiliya Ivanovna - Corresponding Member, D. Sc. (Biology), Director.
2, Kuprevich Str., 220141, Minsk
References
1. Borriss R. Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in Agriculture. Maheshwari D. K. (ed.). Bacteria in Agrobiology: Plant Growth Responses. Heidelberg, German, Springer Heidelberg, 2011, pp. 41-76. https://doi.org/10.1007/978-3-642-20332-9_3
2. Miller J. H. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, 1972. 466 p.
3. Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data. Available at: http:// www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed 2 May 2018).
4. Bolger A. M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, vol. 30, no. 15, pp. 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
5. Genome assembly SPAdes: Center for Algorithmic Biotechnology Web Server. Available at: http://cab.spbu.ru/software/ spades/ (accessed 2 May 2018).
6. Langmead B., Salzberg S. L. Fast gapped-read alignment with Bowtie 2. Nature Methods, 2012, vol. 9, no. 4, pp. 357359. https://doi.org/10.1038/nmeth.1923
7. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M., Kubal M., Meyer F., Olsen G. J., Olson R., Osterman A. L., Overbeek R. A., McNeil L. K., Paarmann D., Paczian T., Parrello B., Pusch G. D., Reich C., Stevens R., Vassieva O., Vonstein V., Wilke A., Zagnitko O. The RAST Server: rapid annotations using subsystems technology. BMC Genomics, 2008, vol. 9, no. 1, pp. 75. https://doi.org/10.1186/1471-2164-9-75
8. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics, 2014, vol. 30, is. 14, pp. 2068-2069. Available at: https://doi.org/10.1093/bioinformatics/btu153 (accessed 2 May 2018).
9. Darling A. C., Mau B., Blattner F. R., Perna N. T. Mauve: Multiple Alignment of Conserved Genomic Sequence With Rearrangements. Genome Research, 2004, vol. 14, no. 7, pp. 1394-1403. https://doi.org/10.1101/gr.2289704
10. Arndt D., Grant J., Marcu A., Sajed T., Pon A., Liang Y., Wishart D. S. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Research, 2016, vol. 44, no. W1, pp. W16-W21. https://doi.org/10.1093/nar/gkw387
11. Harrison K. J., de Crecy-Lagard V., Zallot R. Gene Graphics: a genomic neighborhood data visualization web application. Bioinformatics, 2018, vol. 34, no. 8, pp. 1406-1408. https://doi.org/10.1093/bioinformatics/btx793
12. Sang Yoon Kim, Hajin Song, Mee Kyung Sang, Hang-Yeon Weon, Jaekyeong Song. The complete genome sequence of Bacillus velezensis strain GH1-13 reveals agriculturally beneficial properties and a unique plasmid. Journal of Biotechnology, 2017, vol. 259, pp. 221-227. https://doi.org/10.1016/jjbiotec.2017.06.1206
13. Spielmann-Ryser J., Moser M., Kast P., Weber H. Factors determining the frequency of plasmid cointegrate formation mediated by insertion sequence IS3 from Escherichia coli. MGG Molecular & General Genetics, 1991, vol. 226, no. 3, pp. 441-448. https://doi.org/10.1007/bf00260657
14. Koonin E. V., Makarova K. S., Wolf Y. I. Evolutionary Genomics of Defense Systems in Archaea and Bacteria. Annual Review of Microbiology, 2017, vol. 71, no. 1, pp. 233-261. https://doi.org/10.1146/annurev-micro-090816-093830
15. Wang C., Villion M., Semper C., Coros C., Moineau S., Zimmerly S. A reverse transcriptase-related protein mediates phage resistance and polymerizes untemplated DNA in vitro. Nucleic Acids Research, 2011, vol. 39, no. 17, pp. 7620-7629. https://doi.org/10.1093/nar/gkr397