CALCULATION OF THE BAND GAP OF SEMICONDUCTORS WITHIN THE FRAMEWORK OF THE DENSITY FUNCTIONAL METHOD
Abstract
Within the framework of the density functional theory, the method was developed to calculate the band gap of semiconductors. Calculation of the band gap for a number of monoatomic and diatomic semiconductors demonstrated that the method gives the value of the band gap of almost experimental accuracy. An important point is the fact that the developed method can also be used to calculate both localized states (energy deep-level of defects in crystal), and electronic properties of nanostructures.
References
1. Xiao Zheng et al. // Phys. Rev. Lett. 2011. Vol. 107, N 2. P. 026403-1–026403-4.
2. Sham L. J., Schlüter M. // Phys. Rev. Lett. 1983. Vol. 51, N 20. P. 1888–1890.
3. Paula Mori-Sánchez, Aron J. Cohen, Weitao Yang // Phys. Rev. Lett. 2008. Vol. 100, N 14. P. 146401-1–146401-4.
4. Godby R. W., Schlüter M., Sham L. J. // Phys. Rev. B 1987. Vol. 35, N 8. P. 4170–4171(R).
5. Chan M. K. Y., Ceder G. // Phys. Rev. Lett. 2010. Vol. 105. P. 196403-1–196403-3.
6. Runge E., Gross E. K. U. // Phys. Rev. Lett. 1984. Vol. 52, N 12. P. 997–1000.
7. Stadele M. et al. // Phys. Rev. B 1999. Vol. 59, N 15. P. 10031–10042.
8. Tran F., Blaha P. // Phys. Rev. Lett. 2009. Vol. 102, N 22. P. 226401-1–226401-4.
9. Hedin L. // Phys. Rev. 1965. Vol. 139, N 3A. P. 796–823.
10. Camargo-Martinez J. A., Baquero R. // Phys. Rev. B. 2012. Vol. 86. P. 195106.
11. Кон В. // УФН. 2002. Т. 172, № 3. С. 336–348.
12. Kim K., Jordan K. D. J. // Phys. Chem. 1994. Vol. 98, N 40. P. 10089–10094.