Application of the neural network computing technology for calculating the interval-index characteristics of a minimally redundant modular code
https://doi.org/10.29235/1561-8323-2018-62-6-652-660
Abstract
The article is devoted to the problem of creation of high-speed neural networks (NN) for calculation of interval-index characteristics of a minimally redundant modular code. The functional base of the proposed solution is an advanced class of neural networks of a final ring. These neural networks perform position-modular code transformations of scalable numbers using a modified reduction technology. A developed neural network has a uniform parallel structure, easy to implement and requires the time expenditures of the order (3[log2b]+ [log2k]+6tsum close to the lower theoretical estimate. Here b and k is the average bit capacity and the number of modules respectively; t sum is the duration of the two-place operation of adding integers. The refusal from a normalization of the numbers of the modular code leads to a reduction of the required set of NN of the finite ring on the (k – 1) component. At the same time, the abnormal configuration of minimally redundant modular coding requires an average k-fold increase in the interval index module (relative to the rest of the bases of the modular number system). It leads to an adequate increase in hardware expenses on this module. Besides, the transition from normalized to unregulated coding reduces the level of homogeneity of the structure of the NN for calculating intervalindex characteristics. The possibility of reducing the structural complexity of the proposed NN by using abnormal intervalindex characteristics is investigated.
About the Authors
A. F. ChernyavskyBelarus
Academician, D. Sc. (Engineering), Professor, Head of the Laboratory
A. A. Kolyada
Belarus
D. Sc. (Physics and Mathematics), Accociate professor, Chief researcher
S. Yu. Protasenya
Belarus
Junior researcher
References
1. Chervjakov N. I., Koljada A. A., Ljahov P. A., Babenko M. G., Lavrinenko I. N., Lavrinenko A. V. Modular Arithmetic and its Applications in Infocommunication Technologies. Moscow, 2017. 400 p. (in Russian).
2. Ananda Mohan P. V. Residue number systems: Theory and applications. Basel, 2016. 351 p. https://doi.org/10.1007/978-1-4615-0997-4
3. Chervjakov N. I., Evdokimov A. A., Galushkin A. I., Lavrinenko I. N., Lavrinenko A. V. The Use of Artificial Neural Networks and the Residual Class System in Cryptography. Moscow, 2012. 280 p. (in Russian).
4. Injutin S. A. Fundamentals of Modular Algorithms. Khanty-Mansiysk, 2009. 347 p. (in Russian).
5. Omоndi A., Premkumar B. Residue number systems: Theory and implementation. Singapore, 2007. 311 p. https://doi.org/10.1142/9781860948671
6. Otsokov Sh. A. The way to organize high-precision calculations in modular arithmetic. Pervaya mezhdunarodnaya konferentsiya «Parallel’naya komp’yuternaya algebra i ee prilozheniya v novykh infokommunikatsionnykh sistemakh»: sbornik nauchnykh trudov [First International Conference “Parallel Computer Algebra and Its Applications in New Infocommunication Systems”: collection of scientific papers]. Stavropol, 2014, pp. 270–277 (in Russian).
7. Komarova Yu. A., Talalaev I. A. Analytical review of methods and structures for working with large data. Pervaya mezhdunarodnaya konferentsiya «Parallel’naya komp’yuternaya algebra i ee prilozheniya v novykh infokommunikatsionnykh sistemakh»: sbornik nauchnykh trudov [First International Conference “Parallel Computer Algebra and Its Applications in New Infocommunication Systems”: collection of scientific papers]. Stavropol, 2014, pp. 477–485 (in Russian).
8. Afonin M. S. The way of processing large numbers on a PLIS with a small resource capacity. Pervaya mezhdunarodnaya konferentsiya «Parallel’naya komp’yuternaya algebra i ee prilozheniya v novykh infokommunikatsionnykh sistemakh»: sbornik nauchnykh trudov [First International Conference “Parallel Computer Algebra and Its Applications in New Infocommunication Systems”: collection of scientific papers]. Stavropol, 2014, pp. 511–520 (in Russian).
9. Chervjakov N. I., Evdokimov A. A. Neural networks of the finite ring for the implementation of threshold separation schemes for secretion. Nejrokomp’yutery: razrabotka, primenenie [Neurocomputers], 2007, no. 2–3, pp. 45–50 (in Russian).
10. Strekalov Yu. A., Chervyakov N. I., Galkina V. A., Lavrinenko S. V. Neural network of a finite ring. Patent RF no 2279132 МКП G06N3/04. Publ.: 27.06.2006.
11. Chervjakov N. I., Spel’nikov A. B., Mezenceva A. F. Neural network of a finite ring of direct propagation for operations on elliptic curves. Nejrokomp’yutery: razrabotka, primenenie [Neurocomputers], 2008, no. 1–2, pp. 28–34 (in Russian).
12. Tihonov Je. E., Evdokimov A. A. Software and Hardware Implementation of Neural Networks. Nevinnomyssk, 2013. 116 p. (in Russian).
13. Kondrashov A. V., Gordenko D. V., Pavljuk D. N. Neural network to convert numbers presented in the position code in the residual class. Researches in Science, 2015. no. 1. Available at: http://science.snauka.ru/en/2015/01/8925 (accessed 25.04.2018) (in Russian).
14. Kolyada A. A. Generalized Integrated Characteristic Base of Modular Number System. Informacionnye tehnologii [Information Technologies], 2017, vol. 23, no. 9, pp. 641–649 (in Russian).
15. Vinogradov I. M. Fundamentals of number theory. Saint Petersburg, 2009. 176 p. (in Russian).