Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

CALCULATION OF THE BAND GAP OF SEMICONDUCTORS WITHIN THE FRAMEWORK OF THE DENSITY FUNCTIONAL METHOD

Abstract

Within the framework of the density functional theory, the method was developed to calculate the band gap of semiconductors. Calculation of the band gap for a number of monoatomic and diatomic semiconductors demonstrated that the method gives the value of the band gap of almost experimental accuracy. An important point is the fact that the developed method can also be used to calculate both localized states (energy deep-level of defects in crystal), and electronic properties of nanostructures.

About the Author

V. E. GUSAKOV
НПЦ НАН Беларуси по материаловедению, Минск
Belarus


References

1. Xiao Zheng et al. // Phys. Rev. Lett. 2011. Vol. 107, N 2. P. 026403-1–026403-4.

2. Sham L. J., Schlüter M. // Phys. Rev. Lett. 1983. Vol. 51, N 20. P. 1888–1890.

3. Paula Mori-Sánchez, Aron J. Cohen, Weitao Yang // Phys. Rev. Lett. 2008. Vol. 100, N 14. P. 146401-1–146401-4.

4. Godby R. W., Schlüter M., Sham L. J. // Phys. Rev. B 1987. Vol. 35, N 8. P. 4170–4171(R).

5. Chan M. K. Y., Ceder G. // Phys. Rev. Lett. 2010. Vol. 105. P. 196403-1–196403-3.

6. Runge E., Gross E. K. U. // Phys. Rev. Lett. 1984. Vol. 52, N 12. P. 997–1000.

7. Stadele M. et al. // Phys. Rev. B 1999. Vol. 59, N 15. P. 10031–10042.

8. Tran F., Blaha P. // Phys. Rev. Lett. 2009. Vol. 102, N 22. P. 226401-1–226401-4.

9. Hedin L. // Phys. Rev. 1965. Vol. 139, N 3A. P. 796–823.

10. Camargo-Martinez J. A., Baquero R. // Phys. Rev. B. 2012. Vol. 86. P. 195106.

11. Кон В. // УФН. 2002. Т. 172, № 3. С. 336–348.

12. Kim K., Jordan K. D. J. // Phys. Chem. 1994. Vol. 98, N 40. P. 10089–10094.


Review

Views: 1037


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)