Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

MAGNETOPHORETIC METHOD FOR STUDYING RED BLOOD CELLS BY HEMOGLOBIN OXYGENATION DISTRIBUTION

Abstract

The method is developed for a simultaneous differentiation of red blood cells in terms of magnetic susceptibility, hemoglobin oxygenation, and sedimentation velocity based upon video recording and automated handling of cell motion trajectories in a thin microfluidic channel under the action of crossed gravitational and high-gradient magnetic fields. The study of suspension of red blood cells with a low oxygen partial pressure, for the first time, revealed the existence of cell fractions with considerably reduced and increased hemoglobin oxygenation, which is presumably related with a weakened oxygen transport function of old red blood cells. Our method creates additional possibilities of studying native and pathogenic processes in red blood cells, and can be useful for medical diagnostics.

About the Authors

B. E. KASHEVSKY
Институт тепло- и массообмена им. А. В. Лыкова НАН Беларуси, Минск
Belarus


A. M. ZHOLUD
Институт тепло- и массообмена им. А. В. Лыкова НАН Беларуси, Минск
Belarus


S. B. KASHEVSKY
Институт тепло- и массообмена им. А. В. Лыкова НАН Беларуси, Минск
Belarus


I. V. GORUDKO
Белорусский государственный университет, Минск
Belarus


T. V. MOKHORT
Белорусский государственный медицинский университет, Минск
Belarus


O. N. SHISHKO
Белорусский государственный медицинский университет, Минск
Belarus


References

1. Shibayama N., Sugiyama K., Park S.-Y. // J. Biol. Chem. 2011. Vol. 38. P. 33661–33668.

2. Doster W., Longeville S. // Biophys. J. 2007. Vol. 93. P. 1360–1365; Stadler A. M. et al. // J. Royal. Soc. Interface. 2011. Vol. 8. P. 590–595.

3. Forsyth A. M. et al. // Proc. Natl. Acad. Sci. USA. 2011. Vol. 108. P. 10986–10990.

4. Tsai A. G., Cabrales P., Intaglietta M. // Antioxid. Redox Signalling. 2010. Vol. 12. P. 683–691.

5. Higgins J. M., Mahadevan L. // Proc. Natl. Acad. Sci. USA. 2010. Vol. P. 20587–20592.

6. Уэстбрук К., Ротб К. К., Тэлбот Д. Магнитно-резонансная томография: практ. рук-во. М., 2012.

7. Bhakdi S. C. et al. // Malaria J. 2010. Vol. 9. P 38–42.

8. Jin X. et al. // Analyst. 2011. Vol. 136. P. 2996–3003.

9. Jung Y., Choi Y., Han K., Frazier A. B. // Biomed. Microdevices. 2010. Vol. 12. P. 637–645.

10. Shen F. et al. // Anal. Chem. 2012. Vol. 84. P. 3075–3081.

11. Kashevsky B. E., Zholud A. M., Kashevsky S. B. // Rev. Sci. Instrum. 2012. Vol. 83. Atr. N 075104 (11 p.).

12. Pauling L., Coryell C. // Proc. Nat. Acad. Sci. USA. 1936. Vol. 22. P. 210–216.

13. Dickerson R., Gies I. Hemoglobin: structure, function, evolution and pathology. Menlo Park, CA: Benjamin-Cummings Publishing, 1983.

14. Cerdonio M. et al. // Proc. Nat. Acad. Sci. USA. 1985. Vol. 82. P. 102–103.

15. Zborowski M. et al. // Biophys. J. 2003. Vol. 84. P. 2638–2645.

16. Severinghaus J. W. // J. Appl. Physiology. 1958. Vol. 12. P. 485–486.

17. Aldasouqi S. A., Gossain V. V. // Ann. Saudi. Med. 2008. Vol. 28, N 6. P. 411–419.


Review

Views: 769


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)