Constitutive equations of the axion theory: relativism and duality
https://doi.org/10.29235/1561-8323-2019-63-1-14-21
Abstract
Based on a comparative analysis of relativistic constitutive equations of the Bokut-Serdyukov-Fedorov (BSF) and Tamm, it was shown that the dual invariance of the latter requires the reversibility of the Tamm material tensor, while the BSF equations are properly dual-invariant. The connection of the mentioned approaches is demonstrated by the example of the equations of axion electrodynamics which were first formulated in the BSF formalism.
Communicated by Corresponding Member Lev M. Tomilchik
Keywords
About the Author
E. A. TolkachevBelarus
Tolkachev Evgeny Arkadievich - D. Sc. (Physics and Mathematics), Professor, Chief researcher.
68, Nezavisimosti Ave., 220072, Minsk
References
1. Tamm I. E. Collection of scientific papers. Moscow, 1975, vol. 1, pp. 19-67 (in Russian).
2. Levashov A. E. Motion and duality in relativistic electrodynamics. Minsk, 1979. 320 p. (in Russian).
3. Petrov A. Z. New methods in general theory of relativity. Moscow, 1966. 495 p. (in Russian).
4. Marx G. Das Elektromagnetische Feld in Bewegten Anisotropen Medien. Acta Physica Academiae Scientiarum Hun-garicae, 1953, vol. 3, no. 2, pp. 75-94. https://doi.org/10.1007/bf03155909
5. Bokut B. V., Serduykov A. M., Fedorov F. I. To electrodynamics of optically active media. Minsk, 1970. 36 p. (in Russian).
6. Fedorov F. I. Theory of gyrotropy. Minsk, 1976. 456 p. (in Russian).
7. Berezin A. V., Tolkachev E. A., Fedorov F. I. Dual-invariation of constrain equations for motionless gyrotropic media. Doklady Akademii nauk BSSR = Doklady of the Academy of Sciences of the BSSR, 1985, vol. 29, no. 7, pp. 595-597 (in Russian).
8. Berezin A. V., Tregubovich A. Ya., Tolkachev E. A., Fedorov F. I. Quaternion coupling equations for moving gyrotropic media. Journal of Applied Spectroscopy, 1987, vol. 47, no. 1, pp. 747-751. https://doi.org/10.1007/bf00657146
9. Tregubovich A. Ya. Algebraic methods in electrodynamics of true and induced monopoles. Minsk, 1992. 13 p. (in Russian).
10. Hehl F., Obukhov Y., Rivera J. P., Schmid H. Magnetoelectric Cr2O3 and relativity theory. European Physical Journal B, 2009, vol. 71, no. 3, pp. 321-329. https://doi.org/10.1140/epjb/e2009-00203-7
11. Fuschich V. I., Nikitin A. G. Symmetry of the Maxwell equations. Kiev, 1983. 200 p. (in Russian).
12. Dudko I. G., Tolkachev E. A. Three types of duality of premetric equations of electrodynamics: geometric aspect. Proceedings 9th International Conference "Boyai-Gauss-Lobachevsky Methods of Non-Euclidian Geometry in Modern Physics". Minsk, 2015, pp. 449-454 (in Russian).
13. Hehl F. W., Obukhov Yu. N., Rubilar G. F., Blagojevic M. On the theory of the skewon field: From electrodynamics to gravity. arXiv: gr-qc. 2005, 0506042 v1, pp. 1-15.
14. Tolkachev E. A. Gauge freedom of the macroscopic electrodynamics equations: the two-potential approach. Doklady Natsional ’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2015, vol. 59, no. 6, pp. 47-51 (in Russian).
15. Nikitin A. G., Kuriksha O. Symmetries of field equations of axion electrodynamics. arXiv: hep-th. 2012, 1201.4935v1, pp. 1-24.
16. Gaillard M. K., Zumino B. Self-Duality in Nonlinear Electromagnetism. arXiv: hep-th. 1997, 9705226 v1, pp. 1-12.
17. Frolov V. P., Krtous P. Duality andy-separability of Maxwell equations in Kerr-NUT-(A)dS spacetime. arXiv: hep-th. 2018, 1812.08697v1, pp. 1-7.