Effect of UV-irradiated fatty acids on the spectral properties of myoglobin
https://doi.org/10.29235/1561-8323-2019-63-1-44-54
Abstract
The efficiency of free radical oxidation of higher fatty acids (palmitic, oleic, linoleic, linolenic acids, complex of unsaturated fatty acids of omega-3 and omega-6 plant origin) under the influence of UV irradiation (λ = 180-400 nm) as a possible marker of lipid peroxidation is studied. Micelles of fatty acids (FA) in ethyl alcohol were used as a model of the lipid phase. The effect of UV irradiation on fatty acids was determined from the spectral changes of myoglobin in the region of the Soret band. The level of peroxide oxidation of the lipid phase at the same time was estimated from the accumulation of malonic dialdehyde as a well-known product of irradiation of phospholipids. The direct proportional dependence of the intensity of the difference spectrum of Mb (ΔD) on the number of double bonds in the molecule of oxidized fatty acids, as well as on the time of their UV irradiation and the accumulation of secondary LPO products is obtained. This shows that the spectral changes of Mb under the action of the pool of oxidized forms of fatty acids correlate well with the level of lipid phase peroxidation and can characterize the antioxidant potential of the blood when combined with the known antioxidant Trolox as a calibrator-inhibitor.
Communicated by Corresponding Member Sergei A. Usanov
About the Authors
N. M. LitvinkoBelarus
Litvinko Natalia Mikhailovna - D. Sc. (Chemistry), Assistant Professor, Head of the Laboratory.
5/2, Kuprevich Str., 220141, Minsk
L. A. Skorostetskaya
Belarus
Skorostetskaya Lydia Adamovna - Researcher.
5/2, Kuprevich Str., 220141, MinskD. O. Gerlovsky
Belarus
Gerlovsky Denis Olegovich - Ph. D. (Chemistry), Researcher.
5/2, Kuprevich Str., 220141, MinskYu. Sh. Ermakovich
Belarus
Ermakovich Yulia Shiralievna - Junior researcher.
5/2, Kuprevich Str., 220141, Minsk
G. S. Evdokimova
Belarus
Evdokimova Grazhina Stanislavovna - Junior researcher.
5/2, Kuprevich Str., 220141, Minsk
References
1. Thomas C. E., Kalyanaraman B. Oxygen Radicals and the Disease Process. Harwood Academic Publ., 1998. 296 p.
2. Halliwell B., Gutteridge J. M. C. Free Radicals in Biology and Medicine. 4th ed. New York, Oxford University Press, 2007. 851 p.
3. Pisoschi A. M., Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 2015, vol. 97, pp. 55-74. https://doi.org/10.1016/j.ejmech.2015.04.040
4. Vladimirov Yu. A., Azizova O. A., Deev A. I., Kozlov A. V., Osipov A. N., Poshchupkin D. I. Free radicals in living systems. Moscow, 1991, vol. 29. 249 р. (in Russian).
5. Babenkova I. V., Buravlev E. A., Buravleva K. V., Teselkin Yu. O. Definition of the antioxidant activity of blood plasma in experimental and clinic investigations. Evraziiskii Soyuz Uchenykh N13. Seriya Biologicheskie nauki = Eurasian Union of Scientists No. 13. Series: Biological Sciences, 2015, no. 4, pp. 7-16 (in Russian).
6. Litvinko N. M., Skorostetskaya L. A., Gerlovsky D. O. Phospholipase A2 IB - a new indicator for estimations of the pro-antioxidant status of the organism. Doklady Natsional ’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2017, vol. 61, no. 4, pp. 60-68 (in Russian).
7. Litvinko N. M., Skorostetskaya L. A., Gerlovsky D. O. The interaction of phospholipase A2 with oxidized phospholipids at the lipid-water surface with different structural organization. Chemistry and Physics of Lipids, 2018, vol. 211, pp. 44-51. https://doi.org/10.1016/j.chemphyslip.2017.10.010
8. Litvinko N. M., Skorostetskaya L. A., Gerlovsky D. O. Interaction of phosolipase A2 with phosphatidylcholine in the UV irradiation conditions. Trudy XIXMendeleevskogo s’ezda = Proceedings of XIXMendeleev Congress. Volgograd, 2011, vol. 1, pp. 268 (in Russian).
9. Rice-Evans C., Miller N. Total antioxidant status in plasma and body fluids. Methods in Enzymology, 1994, vol. 234, no. 2, pp. 279-293. https://doi.org/10.1016/0076-6879(94)34095-1
10. Skorostetskaya L. A., Pavluchenko N. I., Ermakovich Yu. Sh., Konopelko S. P., Litvinko N. M. Oxidized phospholipid-hemoglobin system as a measure of the protective action of natural oxidants vs. oxidative stress. Svobodnye radikaly v khimii i zhizni = Free Radicals in Chemistry and Life, Minsk, 2017, pp. 124-126 (in Russian).
11. Baron C. P., Skibsted L. H., Andersen H. J. Peroxidation of linoleate at physiological pH: hemichrome formation by substrate binding protect against metmyoglobin activation by hydrogen peroxide. Free Radical Biology & Medicine, 2000, vol. 28, no. 4, pp. 549 -558. https://doi.org/10.1016/s0891-5849(99)00240-3
12. Gruber F., Bicker W., Oskolkova O. V., Tschachler E., Bochkov V. N. A simplified procedure for semitargeted lipid-omic analysis of oxidized phosphatidylcholines induced by UVA irradiation. Journal of Lipid Research, 2012, vol. 53, no. 6, pp. 1232-1242. https://doi.org/10.1194/jlr.d025270
13. Metelitza D. I., Karasyova E. I. Initiation and inhibition of free-radical processes in biochemical peroxide systems: A review. Applied Biochemistry and Microbiology, 2007, vol. 43, no. 5, pp. 481-505. https://doi.org/10.1134/s000368380705002x
14. Aleksandrova E. V., Belenkii S. A., Shvets V. N., Krisanova N. V., Makoed O. B., Shkoda A. S. Chromoproteins: structure, properties and functions. Exchange of hemoglobin and its disturbances. Zaporozh’e, 2015. 75 p. (in Russian).
15. Andreyuk G. M., Kisel’ M. A. The formation of hemichrome upon interaction of hemoglobin with polar phosphatidylcholine derivatives. Russian Journal of Bioorganic Chemistry, 1997, vol. 23, no. 4, pp. 268-271 (in Russian).
16. Rivera M. G., Hair P. S., Cunnion K. M., Krishna N. K. Peptide Inhibitor of Complement C1 (PIC1) demonstrates antioxidant activity via single electron transport (SET) and hydrogen atom transfer (HAT). PLoS One, 2018, vol. 13, no. 3, e0193931. https://doi.org/10.1371/journal.pone.0193931
17. Terashima M., Kakuno Y., Kitano N., Matsuoka C., Murase M., Togo N., Watanabe R., Matsumura S. Antioxidant activity of flavonoids evaluated with myoglobin method. Plant Cell Reports, 2012, vol. 31, no. 2, pp. 291-298. https://doi. org/10.1007/s00299-011-1163-2
18. Koch J., Burmester T. Membrane-bound globin X protects the cell from reactive oxygen species. Biochemical and Biophysical Research Communications, 2016, vol. 469, no. 2, pp. 275-280. https://doi.org/10.1016/j.bbrc.2015.11.105
19. Ioannou A., Varotsis C. Modifications of hemoglobin and myoglobin by Maillard reaction products (MRPs), PLoS One, 2017, vol. 12, no. 11, e0188095. https://doi.org/10.1371/journal.pone.0188095
20. Banerjee S., Chakraborti A. S. Structural alterations of hemoglobin and myoglobin by glyoxal: a comparative study. International Journal of Biological Macromolecules, 2014, vol. 66, pp. 311-318. https://doi.org/10.1016/j.ijbiomac.2014.02.034
21. Banerjee S., Chakraborti A. S. Methylglyoxal modification enhances the stability of hemoglobin and lowers its iron-mediated oxidation reactions: An in vitro study. International Journal of Biological Macromolecules, 2017, vol. 95, pp. 1159-1168. https://doi.org/10.1016/j.ijbiomac.2016.11.006
22. Metelitza D. I., Eryomin A. N., Sviridov D. O., Kamyshnikov V. S. Initiation and Inhibition of Free Radical Processes in H2O2 - Metmyoglobin (Methemoglobin)-2,2"-Azino-bis-(3-Ethylbenzthiazoline-6-Sulfonic Acid) Systems. Biochemistry, 2001, vol. 66, no. 5, pp. 505-514. https://doi.org/10.1023/a:1010202717442