1. Baker E. N., Baker H. M. Lactoferrin: Molecular structure, binding properties and dynamics of lactoferrin. Cellular and Molecular Life Sciences, 2005, vol. 62, no. 22, pp. 2531-2539. https://doi.org/10.1007/s00018-005-5368-9
2. Legrand D., Elass E., Carpentier M., Mazurier J. Lactoferrin: a modulator of immune and inflammatory responses. Cellular and Molecular Life Sciences, 2005, vol. 62, no. 22, pp. 2549-2559. https://doi.org/10.1007/s00018-005-5370-2
3. Grigorieva D., Sokolov A., Goruko I. Recombinant human lactoferrin modulates neutrophil degranulation and H2O2 production via increase of intracellular free calcium ion concentration and tyrosine phosphorylation. XIII International Conference on Lactoferrin Structure, Functions & Applications. Rome, 2017, pp. 49.
4. Halliwell B., Clement M. V., Long L. H. Hydrogen peroxide in the human body. FEBS Letters, 2000, vol. 486, no. 1, pp. 10-13. https://doi.org/10.1016/s0014-5793(00)02197-9
5. Hancock J., Desikan R., Harrison J., Bright J., Hooley R., Neill S. Doing the unexpected: proteins involved in hydrogen peroxide perception. Journal of Experimental Botany, 2006, vol. 57, no. 8, pp. 1711-1718. https://doi.org/10.1093/jxb/erj180
6. Watson A. J. M., Askew J. N., Sandle G. I. Characterisation of oxidative injury to an intestinal cell line (HT-29) by hydrogen peroxide. Gut, 1994, vol. 35, no. 11, pp. 1575-1581. https://doi.org/10.1136/gut.35.11.1575
7. Arnhold J., Furtmüller P. G., Obinger C. Redox properties of myeloperoxidase. Redox Report, 2003, vol. 8, no. 4, pp. 179-186. https://doi.org/10.1179/135100003225002664
8. Panasenko O. M., Gorudko I. V., Sokolov A. V. Hypochlorous acid as a precursor of free radicals in living systems. Biochemistry (Moscow), 2013, vol. 78, no. 13, pp. 1466-1489. https://doi.org/10.1134/s0006297913130075
9. Davies M. J. Protein oxidation and peroxidation. Biochemistry Journal, 2016, vol. 473, no. 7, pp. 805-825. https://doi.org/10.1042/bj20151227
10. Pattison D. I., Davies M. J. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chemical Research in Toxicology, 2001, vol. 14, no. 10, pp. 1453-1464. https://doi.org/10.1021/tx0155451
11. Bhattacharya M., Mukhopadhyay S. Studying protein misfolding and aggregation by fluorescence spectroscopy. Reviews in Fluorescence 2015. Baltimore, 2016, ch. 1, pp. 1-28. https://doi.org/10.1007/978-3-319-24609-3_1
12. Lakowicz J. R. Principles of fluorescence spectroscopy. Baltimore, 2006, ch. 16, pp. 530-578. https://doi.org/10.1007/978-1-4757-3061-6_16
13. Veen B. S., Winther M. P. J., Heeringa P. Myeloperoxidase: molecular mechanism s of action and their relevance to human health and disease. Antioxidants & Redox Signaling, 2009, vol. 11, no. 11, pp. 2899-2937. https://doi.org/10.1089/ars.2009.2538
14. Giudice A. del, Dicko C., Galantini L., Pavel N. V. Structural response of human serum albumin to oxidation: biological buffer to local formation of hypochlorite. Journal of Physical Chemistry, 2016, vol. 120, no. 48, pp. 12261-12271. https://doi.org/10.1021/acs.jpcb.6b08601
15. Petrônio M. S., Ximenes V. F. Effects of oxidation of lysozyme by hypohalous acids and haloamines on enzymatic activity and aggregation. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2012, vol. 1824, no. 10, pp. 1090-1096. https://doi.org/10.1016/j.bbapap.2012.06.013