Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

High thermal conductivity silicon-carbide ceramics for large-size space optics

https://doi.org/10.29235/1561-8323-2019-63-2-223-234

Abstract

The paper describes the important aspects of the developed technology for manufacturing silicon-carbide substrates for optical mirrors intended for future use in space applications. It is shown that the material with the best combination of thermophysical and mechanical properties (Maksutov’s criterion) among the known analogs used for making astronomical mirrors is obtained. The characteristics of a mirror made of a lightweight mirror substrate with a diameter of 205 mm are described, compared with the parameters of most known mirrors made of silicon carbide for various space missions and as proto types. It is shown that the produced substrate is characterized by a rather low specific gravity – 16.5 kg/m2, which is comparable with the indicators of the best world analogues.

About the Authors

P. S. Grinchuk
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus.
Belarus

Grinchuk Pavel Semenovich – Corresponding Member, D. Sc. (Physics and Mathematics), Head of the Department.

15, P. Brovka Str., 220072, Minsk.



H. Abuhimd
National Nanotechnology Research Center King Abdu laziz City for Science and Technology
Saudi Arabia

Abuhimd Hatem – Ph. D. (Chemistry), Head of the La boratory. 

Riyadh, 11442, P.O. Box 6086.



A. V. Akulich
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus.
Belarus

Akulich Andrei Vladimirovich – Researcher. 

15, P. Brovka Str., 220072, Minsk.



M. V. Kiyashko
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus.
Belarus

Kiyashko Mikhail Viktorovich – Researcher. 

15, P. Brovka Str., 220072, Minsk.



D. V. Solovei
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus.
Belarus

Solovei Dmitry Vladimirovich – Ph. D. (Engineering), Senior researcher.

 15, P. Brovka Str., 220072, Minsk.



M. O. Stepkin
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus.
Belarus

Stepkin Mikhail Olegovich – Processing engineer. 

15, P. Brovka Str., 220072, Minsk.



V. V. Toropov
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus.
Belarus

Toropov Victor Vladimirovich – Ph. D. (Engineering), Leading researcher. 

15, P. Brovka Str., 220072, Minsk.



M. D. Shashkov
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus.
Belarus

Shashkov Mikhail Dmitrievich – Processing engineer. 

15, P. Brovka Str., 220072, Minsk.



A. A. Khort
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus.
Belarus

Khort Aleksandr Aleksandrovich – Ph. D. (Engineering), Researcher. 

15, P. Brovka Str., 220072, Minsk.



M. Yu. Liakh
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus.
Belarus

Liakh Maria Yurievna – Ph. D. (Physics and Mathe matics), Researcher. 

15, P. Brovka Str., 220072, Minsk.



References

1. Fang T. Missing matter foundin the cosmic web. Nature, 2018, vol. 558, no. 7710, pp. 375–376. https://doi.org/10.1038/d41586-018-05432-2

2. Savitskiǐ A. M., Sokolov I. M. Questions of constructing lightened primary mirrors of space telescopes. Journal of Optical Technology, 2009, vol. 76, no. 10, pp. 666–669. https://doi.org/10.1364/jot.76.000666

3. Terebizh V. Yu. Modern optical tekescopes. Moscow, FIZMATLIT Publ., 2005. 80 p. (in Russian).

4. Bely P. The design and construction of large optical telescopes. Springer Science & Business Media, 2006. 505 p.

5. Choyke W. J., Farich R. F., Hoffman R. A. SiC, a new material for mirrors. 1: High power lasers; 2: VUV applications. Applied Optics, 1976, vol. 15, no. 9, pp. 2006–2007. https://doi.org/10.1364/ao.15.002006

6. Maksutov D. D. Manufacturing and study of astronomical optics, 2d ed. Moscow, Nauka Publ., 1984. 272 p. (in Russian).

7. Grinchuk P. S., Kiyashko M. V., Stepkin M. O., Toropov V. V., Akulich A. V., Solovei D. V., Khort A. A., Shashkov M. D., Lyakh M. Yu., Abuhimd H. M., Alshahrani M. S. Preparation of dense reaction-bound ceramics based on silicon carbide. Teplo- i massoperenos–2017: cbornik nauchnykh trudov = Heat and Mass Transfer–2017: collection of scientific papers. Minsk, A.V. Luikov Heat and Mass Transfer Institute of NAS of Belarus, 2018, pp. 56–68 (in Russian).

8. Grinchuk P. S., Kiyashko M. V., Abuhimd H. M., Alshahrani M. S., Stepkin M. O., Toropov V. V., Khort A. A., Solovei D. V., Akulich A. V., Shashkov M. D., Liakh M. Yu. Effect of technological parameters on densification of reaction bonded Si/SiC ceramics. Journal of the European Ceramic Society, 2018, vol. 38, no. 15, pp. 4815–4823. https://doi.org/10.1016/j.jeurceramsoc.2018.07.014

9. Grinchuk P. S., Abuhimd H. M., Fisenko S. P., Khodyko Yu. A. Growth of Silicon Carbide Nanolayers on Contact of Porous Carbon with Molten Silicon. Journal of Engineering Physics and Thermophysics, 2017, vol. 90, no. 5, pp. 1102–1106. https://doi.org/10.1007/s10891-017-1663-1

10. Grinchuk, P. S., Abuhimd H. M., Alshahrani M. S., Kiyashko M. V., Solovei D. V., Akulich A. V., Stepkin M. O., Khort A. A. Multistage Technology for Production of Reaction-Sintered Dense Silicon Carbide (Invited Lecture). International Symposium on Innovation in Materials Processing. ISIMP 2017. Phoenix Jeju, 2017, pp. 11–12.

11. Abuhimd H. M., Alshahrani M. S., Grinchuk P. S., Solovei D. V.,Stepkin M. O., Akulich A. V., Khort A. A. Synthesis of reaction-sintered silicon carbide ceramics by a two-stage siliconizing method. 15th Conference & Exhibition of the European Ceramic Society. Budapest, 2017, pp. 125.

12. Abuhimd H. M., Alshahrani M. S., Grinchuk P. S., Solovei D. V., Kiyashko M. V., Toropov V. V., Stepkin M. O., Khort A. A. Pyrolysis of various carbon precursors inside of porous silicon carbide matrix for reaction-sintered SiC substrates. European Advanced Materials Congress. Stockholm; Helsinki, 2017.

13. Grinchuk P. S., Solovei D. V., Kiyashko M. V., Stepkin M. O., Akulich A. V., Abuhimd H. M., Alshahrani M. S. Formation of the Silicon Carbide Nanographite Ceramic Matrix Composite. The 15th International Symposium on Novel and Nano Materials. Lisbon, 2018, pp. 252.

14. Wang Yao, Yu-min Zhang, Jie-cai Han, Hong-bo Zuo. Fabrication and test of reaction bond silicon carbide for optical applications. Transactions of Nonferrous Metals Society of China, 2006, vol. 16, no. 2, pp. 409–413. https://doi.org/10.1016/s1003-6326(06)60070-8

15. Cho T. Y., Kim Y. W. Effect of grain growth on the thermal conductivity of liquid-phase sintered silicon carbide ceramics. Journal of the European Ceramic Society, 2017, vol. 37, no. 11, pp. 3475–3481. https://doi.org/10.1016/j.jeurceramsoc.2017.04.050

16. Matović B., Bučevac D., Urbanović V., Stanković N., Daneu N., Volkov-Husović T., Babic B. Monolithic nanocrystalline SiC ceramics. Journal of the European Ceramic Society, 2016, vol. 36, no. 12, pp. 3005–3010. https://doi.org/10.1016/j.jeurceramsoc.2015.10.031

17. Borodulya V. A., Vinogradov L. M., Grebenkov A. Zh., Mikhailov A. A. Synthesis of silicon carbide in electrothermal reactor with fluidized bed of carbon particles. Goreniye i plazmokhimiya [Combustion and Plasma Chemistry], 2015, vol. 13, no. 2, pp. 92–102 (in Russian).

18. Smorygo O., Marukovich A., Mikutski V., Sadykov V. Evaluation of SiC-porcelain ceramics as the material for monolithic catalyst supports. Journal of Advanced Ceramics, 2014, vol. 3, no. 3, pp. 230–239. https://doi.org/10.1007/s40145-014-0114-0

19. Kovalevskiy V. N. Structural formation of a carbide-silicon matrix in the creation of a diamond-carbide silicon composition. Ogneupory i tekhnicheskaya keramika = Refractories and technical ceramics, 2005, no. 5, pp. 8–14 (in Russian).

20. Ilyuschenko А. Ph., Zvonarev Е. V., Vitko Zh. А., Osipov V. А., Babura D. V. Influence of the modes production of reactive-sintered carbide ceramics on the structure and properties. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2017, vol. 61, no. 3, pp. 108–115 (in Russian).

21. Il’yushchenko A. F., Osipov V. A., Zvonarev E. V., Babura D. V. Optical mirrors made of ceramic-glass composites. Physico-mechanical and functional pro perties. Novyye materialy i tekhnologii: poroshkovaya metallurgiya, kompozitsionnyye materialy, zashchitnyye pokrytiya, svarka. Materialy 13-y mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [New materials and technologies: powder me tallurgy, composite materials, protective coatings, welding. Materials of the 13th International Scientific and Technical Conference]. Minsk, 2018, pp. 38–41 (in Russian).

22. Bougoin M., Lavenac J. From Herschel to Gaia: 3-meter class SiC space optics. Optical Manufacturing and Testing IX. International Society for Optics and Photonics, 2011, vol. 8126, p. 81260V.

23. Tsuno K. Reaction-sintered silicon carbide: newly developed material for lightweight mirrors. 5th International Conference on Space Optics. Toulouse, 2004, vol. 10568, pp. F-2–F-6.

24. Zhang Y. Y., Jing W., Cheng Y., Hu G., Fang J.-Z. Design and finite element analysis of Φ510 mm SiC ultra-lightweight mirror. Optics and Precision Engineering, 2012, vol. 20, no. 8, pp. 1718-1724. https://doi.org/10.3788/ope.20122008.1718


Review

Views: 6665


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)