Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

KURZWEIL–HENSTOCK INTEGRABILITY OF THE PRODUCT OF INTEGRABLE FUNCTIONS

Abstract

The article deals with the problem of integrability of the product of integrable functions in the Kurzweil–Henstock sense. The classical theorem states here that the product of an integrable function and a function of bounded variation is also integrable. In the article it is proved that the product of a function with the primitive satisfying the Hölder condition with the exponent α or with the module φ and a function satisfying the Hölder condition with the exponent β or with the module ψ such that α + β > 1  or t–2φ(t)ψ(t) is integrable. Similar results for functions with generalized (Winer, Young, Waterman, Schramm) bounded variations are stated.

About the Authors

M. L. GOLDMAN
Peoples’ Friendship University of Russia, Moscow
Russian Federation


P. P. ZABREIKO
Belarussian State University, Minsk
Belarus


References

1. Лукомский, С. Ф. Интегральное исчисление (функции одной переменной) / С. Ф. Лукомский. – Саратов: Из-во Саратовского ун-та, 2005. – 144 с.

2. Лукашенко, Т. П. Обобщенные интегралы / Т. П. Лукашенко, В. А. Скворцов, А. П. Солодов. – Москва: URSS (ЛИБРОКОМ), 2009; 2011. – 275 с.

3. Bartle, R. G. A Modern Theory of Integration (Graduate Studies in Mathematics, 32) / R. G. Bartle. – American Mathematical Society, 2001. – 458 р.

4. Кондурарь, В. Т. Sur l’integrale de Stiltjes / В. Т. Кондурарь // Матем. сб. – 1937. – Т. 2, № 44. – С. 361–366.

5. Appell, J. Bounded Variation and Around / J. Appell, J. Banaš, N. Merentes. – Berlin, 2014.

6. Young, L. G. An inequality of the Hölder type connected with Stieltjes integration / L. G. Young // Acta Math. – 1936. – Vol. 67. – P. 251–282.

7. Young, L. G. Inequalities connected with p-th power variation in the Wiener sense and with integrated Lipschitz conditions... / L. G. Young // Proc. London Math. Soc. – 1937. – Vol. 2, N 43. – P. 449–467.

8. Lesniewicz, R. On generalized variations / R. Lesniewicz, W. Orlicz // Studia Math. – 1973. – Vol. 45. – P. 71–109.

9. Леви, П. Конкретные проблемы функционального анализа / П. Леви. – Москва: Наука, 1967. – 510 с.

10. Schramm, M. Functions of Ф-bounded variation and Riemann–Stiltjes integration / M. Schramm // Trans. Amer. Math. Soc. – 1985. – Vol. 287, N 1. – P. 49–63.


Review

Views: 1161


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)