Structure and physico-chemical properties of fibrillary collagen fabric modified by silicon dioxide and hyaluronic acid
https://doi.org/10.29235/1561-8323-2020-64-2-173-185
Abstract
The connective tissue sheaths of paravertebral tendons (peritenons) of white laboratory rats treated with silicon dioxide and hyaluronic acid were studied. It was found that peritenones are natural composites with orthogonal anisotropy with a developed system of interstitial porous membranes that regulate tissue hydrodynamic flows. The extracellular matrix of peritenons contains carbonate-hydroxyapatite and calcium hydroxide in the amorphized state. Silicon dioxide and hyaluronate form hydrophobic silicate and hyaluronate coatings of collagen fibrils (encapsulation), strengthen bonds in Amides I, II, III, reduce the intensity of the bands of bound hydroxyl and stretching vibration bands of phosphate groups, which indicates the replacement of OH groups with carbonate ions and the suppression synthesis of hydroxyapatite. A key mechanism for reducing the intensity of apatitogenesis is the encapsulation of collagen fibrils, accompanied by screening the centers of epitaxial interactions that are structured during heterogeneous nucleation of calcium phosphates. In SBF biomimetic fluid, the deforming effect of modifying agents is leveled, but hydration and decomposition of fibrillar collagen increase. Moreover, against the background of excess supply of exogenous phosphates and carbonates from SBF, apatitogenesis in peritenons is carried out mainly by the mechanism of homogeneous nucleation.
Keywords
About the Authors
A. A. GaidashBelarus
Gaidash Alexander A. – D. Sc. (Medicine), Professor, Chief researcher.
9/1, Surganov Str., 220072, Minsk
V. K. Krut’ko
Belarus
Krut’ko Valentina K. – Ph. D. (Chemistry), Assistant professor, Head of the Laboratory.
9/1, Surganov Str., 220072, Minsk
A. I. Kulak
Belarus
Kulak Anatoly I. – Corresponding Member, D. Sc. (Chemistry), Professor, Director.
9/1, Surganov Str., 220072, Minsk
O. N. Musskaya
Belarus
Musskaya Olga N. – Ph. D. (Chemistry), Assistant professor, Senior researcher.
9/1, Surganov Str., 220072, Minsk
K. V. Skrotskaya
Belarus
Skrotskaya Katarina V. – Engineer.
14, Leningradskaya Str., 220030, Minsk
N. L. Budeiko
Belarus
Budeiko Nikolay L. – Ph. D. (Chemistry), Head of the Laboratory.
9/1, Surganov Str., 220072, Minsk
References
1. Gaidash A. А., Kulak A. I., Drozdovski K. V., Kazbanov V. V., Krut’ko V. K., Musskaya O. N., Skrotskaya K. V., Linnik Yu. I. Structural and physico-chemical transformations of modified with epoxy resin pericardia implants. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the national Academy of Sciences of Belarus, 2018, vol. 62, no. 6, pp. 703-711 (in Russian). https://10.29235/1561-8323-2018-62-6-703-711
2. Lee C., Kim S. H., Choi S.-H., Kim Y. J. High-concentration glutaraldehyde fixation of bovine pericardium in organic solvent and post-fixation glycine treatment: in vitro material assessment and in vivo anticalcification effect. European Journal of Cardio-Thoracic Surgery, 2011, vol. 39, no. 3, pp. 381–387. https://doi.org/10.1016/j.ejcts.2010.07.015
3. Connolly J. M., Alferiev I., Clark-Gruel J. N., Eidelman N., Sacks M., Palmatory E., Kronsteiner A., Defelice S., Xu J., Ohri R., Narula N., Vyavahare N., Levy R. J., Clark-Gruel J. N. Triglycidylamine crosslinking of porcine aortic valve cusps or bovine pericardium results in improved biocompatibility, biomechanics, and calcification resistance. American Journal of Pathology, 2005, vol. 166, no. 1, pp. 1–13. https://doi.org/10.1016/s0002-9440(10)62227-4
4. Gaydash A. A., Drozdovskiy K. V., Melnikova G. B., Kuznetsova T. A., Chizhik S. A., Krut’ko V. K., Kulak A. I., Linnik Yu. I., Skrotskaya K. V., Kazbanov V. V., Gurinovich T. A., Kanunnikova A. R. Scanning probe microscopy of pericardium modified with ethylene glycol diglycidyl ether. Novosti mediko-biologicheskih nauk = News of Biomedical Sciences, 2018, vol. 18, no. 2, pp. 96-106 (in Russian).
5. Strahov I. P., Aronina Yu. N., Gajdarov L. P. Chemistry and technology of leather and fur. Moscow, 1970. 632 p. (in Russian).
6. Tang S., Vickers S. M., Hsu H.-P., Spector M. Fabrication and characterization of porous hyaluronic acid–collagen composite scaffolds. Journal of Biomedical Materials Research Part A, 2007, vol. 82A, no. 2, pp. 323–335. https://doi.org/10.1002/jbm.a.30974
7. Liu L. Sh., Thompson A. Y., Heidaran M. A., Poser J. W., Spiro R. C. An osteoconductive collagen/hyaluronate matrix for bone regeneration. Biomaterials, 1999, vol. 20, no. 12, pp. 1097-1108. https://doi.org/10.1016/s0142-9612(99)00006-x
8. Park S. N., Park J. C., Kim H. O., Song M. J., Suh H. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials, 2002, vol. 23, no. 4, pp. 1205–1212. https://doi.org/10.1016/s0142-9612(01)00235-6
9. Kim Z.-H., Lee Y., Kim S.-M., Kim H., Yun C.-K., Choi Y.-S. A Composite Dermal Filler Comprising Cross-Linked Hyaluronic Acid and Human Collagen for Tissue Reconstruction. Journal of Microbiology and Biotechnology, 2015, vol. 25, no. 3, pp. 399–406. https://doi.org/10.4014/jmb.1411.11029
10. Hahn S. K., Ohri R., Giachelli C. M. Anti-calcification of bovine pericardium for bioprosthetic heart valves after surface modification with hyaluronic acid derivatives. Biotechnology and Bioprocess Engineering, 2005, vol. 10, no. 3, pp. 218–224. https://doi.org/10.1007/bf02932016
11. Gaydash A. A., Krut’ko V. K., Kulak A. I., Skrotskaya K. V., Musskaya O. N., Zamaro A. S., Danilova-Tret’yak S. M. Scanning electron microscopy of collagen-containing materials modified with silicon dioxide and hyaluronic acid. Novosti mediko-biologicheskih nauk = News of Biomedical Sciences, 2019, vol. 198, no. 3, pp. 68-83 (in Russian).
12. Gajjeraman S., Narayanan K., Hao J., Qin C., George A. Matrix Macromolecules in Hard Tissues Control the Nucleation and Hierarchical Assembly of Hydroxyapatite. Journal of Biological Chemistry, 2006, vol. 282, no. 2, pp. 1193– 1204. https://doi.org/10.1074/jbc.m604732200
13. Veis A., Dorvee J. R. Biomineralization Mechanisms: A New Paradigm for Crystal Nucleation in Organic Matrices. Calcified Tissue International, 2012, vol. 93, no. 4, pp. 307–315. https://doi.org/10.1007/s00223-012-9678-2
14. Bellami L. The Infra-red Spectra of Complex Molecules. Springer, 1975. 433 p. https://doi.org/10.1007/978-94-011-6017-9
15. Krut’ko V. K., Kazbanov V. V., Musskaya O. N., Gaidash A. A., Kulak A. I., Chekan N. M., Serdobintsev M. S., Skrotskaya K. V. Physicochemical Properties and Structure of the Bone Matrix in Simulated Tuberculous Osteitis. Technical Physics, 2019, vol. 64, no. 1, pp. 121–126. https://doi.org/10.1134/S1063784219010183