Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Structure and physico-chemical properties of fibrillary collagen fabric modified by silicon dioxide and hyaluronic acid

https://doi.org/10.29235/1561-8323-2020-64-2-173-185

Abstract

The connective tissue sheaths of paravertebral tendons (peritenons) of white laboratory rats treated with silicon dioxide and hyaluronic acid were studied. It was found that peritenones are natural composites with orthogonal anisotropy with a developed system of interstitial porous membranes that regulate tissue hydrodynamic flows. The extracellular matrix of peritenons contains carbonate-hydroxyapatite and calcium hydroxide in the amorphized state. Silicon dioxide and hyaluronate form hydrophobic silicate and hyaluronate coatings of collagen fibrils (encapsulation), strengthen bonds in Amides I, II, III, reduce the intensity of the bands of bound hydroxyl and stretching vibration bands of phosphate groups, which indicates the replacement of OH groups with carbonate ions and the suppression synthesis of hydroxyapatite. A key mechanism for reducing the intensity of apatitogenesis is the encapsulation of collagen fibrils, accompanied by screening the centers of epitaxial interactions that are structured during heterogeneous nucleation of calcium phosphates. In SBF biomimetic fluid, the deforming effect of modifying agents is leveled, but hydration and decomposition of fibrillar collagen increase. Moreover, against the background of excess supply of exogenous phosphates and carbonates from SBF, apatitogenesis in peritenons is carried out mainly by the mechanism of homogeneous nucleation.

About the Authors

A. A. Gaidash
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Gaidash Alexander A. – D. Sc. (Medicine), Professor, Chief researcher.

9/1, Surganov Str., 220072, Minsk



V. K. Krut’ko
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Krut’ko Valentina K. – Ph. D. (Chemistry), Assistant professor, Head of the Laboratory.

9/1, Surganov Str., 220072, Minsk



A. I. Kulak
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Kulak Anatoly I. – Corresponding Member, D. Sc. (Chemistry), Professor, Director.

9/1, Surganov Str., 220072, Minsk



O. N. Musskaya
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Musskaya Olga N. – Ph. D. (Chemistry), Assistant professor, Senior researcher.

9/1, Surganov Str., 220072, Minsk



K. V. Skrotskaya
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

Skrotskaya Katarina V. – Engineer.

14, Leningradskaya Str., 220030, Minsk



N. L. Budeiko
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Budeiko Nikolay L. – Ph. D. (Chemistry), Head of the Laboratory.

9/1, Surganov Str., 220072, Minsk



References

1. Gaidash A. А., Kulak A. I., Drozdovski K. V., Kazbanov V. V., Krut’ko V. K., Musskaya O. N., Skrotskaya K. V., Linnik Yu. I. Structural and physico-chemical transformations of modified with epoxy resin pericardia implants. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the national Academy of Sciences of Belarus, 2018, vol. 62, no. 6, pp. 703-711 (in Russian). https://10.29235/1561-8323-2018-62-6-703-711

2. Lee C., Kim S. H., Choi S.-H., Kim Y. J. High-concentration glutaraldehyde fixation of bovine pericardium in organic solvent and post-fixation glycine treatment: in vitro material assessment and in vivo anticalcification effect. European Journal of Cardio-Thoracic Surgery, 2011, vol. 39, no. 3, pp. 381–387. https://doi.org/10.1016/j.ejcts.2010.07.015

3. Connolly J. M., Alferiev I., Clark-Gruel J. N., Eidelman N., Sacks M., Palmatory E., Kronsteiner A., Defelice S., Xu J., Ohri R., Narula N., Vyavahare N., Levy R. J., Clark-Gruel J. N. Triglycidylamine crosslinking of porcine aortic valve cusps or bovine pericardium results in improved biocompatibility, biomechanics, and calcification resistance. American Journal of Pathology, 2005, vol. 166, no. 1, pp. 1–13. https://doi.org/10.1016/s0002-9440(10)62227-4

4. Gaydash A. A., Drozdovskiy K. V., Melnikova G. B., Kuznetsova T. A., Chizhik S. A., Krut’ko V. K., Kulak A. I., Linnik Yu. I., Skrotskaya K. V., Kazbanov V. V., Gurinovich T. A., Kanunnikova A. R. Scanning probe microscopy of pericardium modified with ethylene glycol diglycidyl ether. Novosti mediko-biologicheskih nauk = News of Biomedical Sciences, 2018, vol. 18, no. 2, pp. 96-106 (in Russian).

5. Strahov I. P., Aronina Yu. N., Gajdarov L. P. Chemistry and technology of leather and fur. Moscow, 1970. 632 p. (in Russian).

6. Tang S., Vickers S. M., Hsu H.-P., Spector M. Fabrication and characterization of porous hyaluronic acid–collagen composite scaffolds. Journal of Biomedical Materials Research Part A, 2007, vol. 82A, no. 2, pp. 323–335. https://doi.org/10.1002/jbm.a.30974

7. Liu L. Sh., Thompson A. Y., Heidaran M. A., Poser J. W., Spiro R. C. An osteoconductive collagen/hyaluronate matrix for bone regeneration. Biomaterials, 1999, vol. 20, no. 12, pp. 1097-1108. https://doi.org/10.1016/s0142-9612(99)00006-x

8. Park S. N., Park J. C., Kim H. O., Song M. J., Suh H. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials, 2002, vol. 23, no. 4, pp. 1205–1212. https://doi.org/10.1016/s0142-9612(01)00235-6

9. Kim Z.-H., Lee Y., Kim S.-M., Kim H., Yun C.-K., Choi Y.-S. A Composite Dermal Filler Comprising Cross-Linked Hyaluronic Acid and Human Collagen for Tissue Reconstruction. Journal of Microbiology and Biotechnology, 2015, vol. 25, no. 3, pp. 399–406. https://doi.org/10.4014/jmb.1411.11029

10. Hahn S. K., Ohri R., Giachelli C. M. Anti-calcification of bovine pericardium for bioprosthetic heart valves after surface modification with hyaluronic acid derivatives. Biotechnology and Bioprocess Engineering, 2005, vol. 10, no. 3, pp. 218–224. https://doi.org/10.1007/bf02932016

11. Gaydash A. A., Krut’ko V. K., Kulak A. I., Skrotskaya K. V., Musskaya O. N., Zamaro A. S., Danilova-Tret’yak S. M. Scanning electron microscopy of collagen-containing materials modified with silicon dioxide and hyaluronic acid. Novosti mediko-biologicheskih nauk = News of Biomedical Sciences, 2019, vol. 198, no. 3, pp. 68-83 (in Russian).

12. Gajjeraman S., Narayanan K., Hao J., Qin C., George A. Matrix Macromolecules in Hard Tissues Control the Nucleation and Hierarchical Assembly of Hydroxyapatite. Journal of Biological Chemistry, 2006, vol. 282, no. 2, pp. 1193– 1204. https://doi.org/10.1074/jbc.m604732200

13. Veis A., Dorvee J. R. Biomineralization Mechanisms: A New Paradigm for Crystal Nucleation in Organic Matrices. Calcified Tissue International, 2012, vol. 93, no. 4, pp. 307–315. https://doi.org/10.1007/s00223-012-9678-2

14. Bellami L. The Infra-red Spectra of Complex Molecules. Springer, 1975. 433 p. https://doi.org/10.1007/978-94-011-6017-9

15. Krut’ko V. K., Kazbanov V. V., Musskaya O. N., Gaidash A. A., Kulak A. I., Chekan N. M., Serdobintsev M. S., Skrotskaya K. V. Physicochemical Properties and Structure of the Bone Matrix in Simulated Tuberculous Osteitis. Technical Physics, 2019, vol. 64, no. 1, pp. 121–126. https://doi.org/10.1134/S1063784219010183


Review

Views: 989


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)