Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

One-pot synthesis of cyclic β-dicarbonyl compounds as synthons for 11-deoxyprostanoids

https://doi.org/10.29235/1561-8323-2020-64-2-186-192

Abstract

One-pot synthesis of cyclic β-dicarbonyl synthons for 11-deoxyprostanoids has been developed on the basis of cyclopentane-1,3-dione and 5-phenyl tetronic acid. The obtained 2-alkyl(arylalkyl)-substituted cyclopentane-1,3-diones have been transformed into cyclopentenone precursors of 11-deoxy-PGE 1 and 11-deoxy-PGE 2 analogues.

About the Authors

F. S. Pashkovsky
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Pashkovsky Felix S. – Ph. D. (Chemistry), Head of the Laboratory.

5/2, Kuprevich Str., 220141, Minsk



Yu. S. Dontsu
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Dontsu Yuliya S. – Ph. D. (Chemistry), Senior researcher.

5/2, Kuprevich Str., 220141, Minsk



D. I. Korneev
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Korneev Dmitry I. – Master of Chemistry, Junior researcher.

5/2, Kuprevich Str., 220141, Minsk



D. B. Rubinov
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Rubinov Dmitry B. – Ph. D. (Chemistry), Leading researcher.

5/2, Kuprevich Str., 220141, Minsk



F. A. Lakhvich
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Lakhvich Fedor A. – Academician, D. Sc. (Chemistry), Professor, Chief researcher.

5/2, Kuprevich Str., 220141, Minsk



References

1. Lakhvich F. A., Pashkovsky F. S., Koroleva E. V. Heteroprostanoids: synthesis and biological activity. Russian Chemical Reviews, 1992, vol. 61, no. 2, pp. 243–266. https://doi.org/10.1070/rc1992v061n02abeh000943

2. Collins P. W., Djuric S. W. Synthesis of Therapeutically Useful Prostaglandin and Prostacyclin Analogs. Chemical Reviews, 1993, vol. 93, no. 4, pp. 1533–1564. https:// doi.org/10.1021/cr00020a007

3. Biaggio F. C., Rufino A. R., Zaim M. H., Zaim C. Y. H., Bueno M. A., Rodrigues A. Synthesis and Biological Activity of Prostaglandin Analogs Containing Heteroatoms in the Cyclopentane Ring. Current Organic Chemistry, 2005, vol. 9, no. 5, pp. 419–457. https://doi.org/10.2174/1385272053174912

4. Das S., Chandrasekhar S., Yadav J. S., Grée R. Recent Developments in the Synthesis of Prostaglandins and Analogs. Chemical Reviews, 2007, vol. 107, no. 7, pp. 3286–3337. https://doi.org/10.1021/cr068365a

5. Ge Y.-Y., Cai Z.-Y., Zhou W.-C. Progress in the Total Synthesis of Prostaglandins. Chinese Journal of Pharmaceuticals, 2013, vol. 44, no. 7, pp. 720–728.

6. Peng H., Chen F.-E. Recent advances in asymmetric total synthesis of prostaglandins. Organic and Biomolecular Chemistry, 2017, vol. 15, no. 30, pp. 6281–6301. https://doi.org/10.1039/c7ob01341h

7. Dams I., Wasyluk J., Prost M., Kutner A. Therapeutic uses of prostaglandin F 2α analogues in ocular disease and novel synthetic strategies. Prostaglandins & Other Lipid Mediators, 2013, vol. 104–105, pp. 109–121. https://doi.org/10.1016/j.prostaglandins.2013.01.001

8. Khlebnicova T. S., Lakhvich F. A. Synthesis of natural and related bioactive substances based on derivatives of cyclic b-diketones. Itogi i perspektivy razvitiya bioorganicheskoi khimii v Respublike Belarus’: sbornik statei, posvyashchyashchennykh 85-letiyu akademika A. A. Akhrema [Results and prospects for the development of bioorganic chemistry in the Republic of Belarus: collection articles dedicated to 85th anniversary of Academician A. A. Akhrem]. Grodno, 1998, pp. 157–182 (in Russian).

9. Schmidt A., Boland W. General Strategy for the Synthesis of B 1 Phytoprostanes, Dinor Isoprostanes, and Analogs. Journal of Organic Chemistry, 2007, vol. 72, no. 5, pp. 1699–1706. https://doi.org/10.1021/jo062359x

10. Pashkovskii F. S., Katok Ya. M., Khlebnikova T. S., Koroleva E. V., Lakhvich F. A. Heterocyclic analogs of prostaglandins. I. Synthesis of 3-alkyl(aralkyl)-2,5-dihydrofuran-2-ones as synthons for 11-deoxy-10-oxaprostanoids. Russian Journal of Organic Chemistry, 2003, vol. 39, no. 7, pp. 998–1009. https://doi.org/10.1023/b:rujo.0000003193.75790.de

11. Pashkovskii F. S., Shchukina E. M., Gribovskii M. G., Lakhvich F. A. Heterocyclic analogs of prostaglandins. IV. Synthesis of 3,7-interphenylene 3,10(11)-dioxa-13-azaprostanoids and 9-oxa-7-azaprostanoids based on tetronic acid and aromatic aldehydes. Russian Journal of Organic Chemistry, 2008, vol. 44, no. 5, pp. 657–670. https://doi.org/10.1134/s1070428008050047

12. Hayashi Y. Pot economy and one-pot synthesis. Chemical Science, 2016, vol. 7, no. 2, pp. 866–880. https://doi.org/10.1039/c5sc02913a

13. Sydnes M. O. One-Pot Reactions: A Step Towards Greener Chemistry. Current Green Chemistry, 2014, vol. 1, no. 3, pp. 216–226. https://doi.org/10.2174/2213346101666140221225404

14. Pashkovsky F. S., Korneev D. I., Lakhvich F. A. Synthons for new 11-deoxy-3-oxa-3,7-inter-m-phenylene prostaglandin analogues. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2019, vol. 63, no. 3, pp. 291–297 (in Russian). https://doi.org/10.29235/1561-8323-2019-63-3-291-297


Review

Views: 784


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)