Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Molecular mechanisms of high-affinity interaction of the protein tBid with the mitochondrial complex МТСН2-МОАР-1

https://doi.org/10.29235/1561-8323-2020-64-2-193-198

Abstract

Mitochondrial carrier homolog 2 (MTCH2) is a protein that plays an important role in the execution of apoptosis being a receptor for tBid in the outer membrane of mitochondria. Previously, it has been shown that the binding of the modulator of apoptosis-1 (MOAP-1) protein to MTCH2 is required for the efficient MTCH2-mediated recruitment of tBid to mitochondria and, in contrast, tBid is required for the MOAP-1 recruitment to mitochondria, but the structure understanding of these phenomena is absent. In this study, we have provided structural insights into the mechanisms of regulation of the MTCH2 receptor function for tBid by MOAP-1.

Keywords


About the Authors

H. V. Dudko
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

Dudko Hanna V. – Junior researcher.

27, Akademicheskaya Str., 220072, Minsk



V. A. Urban
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

Urban Viktar A. – Junior researcher.

27, Akademicheskaya Str., 220072, Minsk



V. G. Veresov
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

Veresov Valery G. – D. Sc. (Biology), Chief researcher.

27, Akademicheskaya Str., 220072, Minsk



References

1. Czabotar P. E., Lessene G., Strasser A., Adams J. M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nature Reviews Molecular Cell Biology, 2014, vol. 15, no. 1, pp. 49–63. https://doi.org/10.1038/nrm3722

2. Martinou J. C., Youle R. J. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Developmental Cell, 2011, vol. 21, no. 1, pp. 92–101. https://doi.org/10.1016/j.devcel.2011.06.017

3. Tan C. T., Zhou Q.-L., Su Y.-C., Fu N. Y., Chang H.-C., Tao R. N., Sukumaran S. K., Baksh S., Tan Y.-J., Sabapathy K., Yu C.-D., Yu V. C. MOAP-1 Mediates Fas-Induced Apoptosis in Liver by Facilitating tBid Recruitment to Mitochondria. Cell Reports, 2016, vol. 16, no. 1, pp. 174–185. https://doi.org/10.1016/j.celrep.2016.05.068

4. Veresov V. G., Davidovskii A. I. Structural insights into proapoptotic signaling mediated by MTCH2, VDAC2, TOM40 and TOM22. Cellular Signalling, 2014, vol. 26, no. 2, pp. 370–382. https://doi.org/10.1016/j.cellsig.2013.11.016

5. Schug Z. T., Gonzalvez F., Houtkooper R. H., Vaz F. M., Gottlieb E. BID is cleaved by caspase-8 within a native complex on the mitochondrial membrane. Cell Death & Differentiation, 2011, vol. 18, no. 3, pp. 538–548. https://doi.org/10.1038/cdd.2010.135

6. Roy A., Kucukural A., Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 2010, vol. 5, no. 3, pp. 725–738. https://doi.org/10.1038/nprot.2010.5

7. Heo L., Park H., Seok C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 2013, vol. 41, no. W1, pp. W384–W388. https://doi.org/10.1093/nar/gkt458

8. Lomize M. A., Lomize A. L., Pogozheva I. D., Mosberg H. I. OPM: orientations of proteins in membranes database. Bioinformatics, 2006, vol. 22, no. 5, pp. 623–625. https://doi.org/10.1093/bioinformatics/btk023

9. Kozakov D., Brenke R., Comeau S. R., Vajda S. PIPER: an FFT-Based protein docking program with pairwise potentials. Proteins: Structure, Function, and Bioinformatics, 2006, vol. 65, no. 2, pp. 392–406. https://doi.org/10.1002/prot.21117

10. Heo L., Lee H., Seok C. GalaxyRefineComplex: Refinement of protein-protein complex model structures driven by interface repacking. Scientific Reports, 2016, vol. 6, no. 1, pp. 32153. https://doi.org/10.1038/srep32153

11. Mandell D. J., Coutsias E. A., Kortemme T. Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nature Methods, 2009, vol. 6, no. 8, pp. 551–552. https://doi.org/10.1038/nmeth0809-551

12. Gray J. J., Moughon S., Wang C., Schueler-Furman O., Kuhlman B., Rohl C. A., Baker D. Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. Journal of Molecular Biology, 2003, vol. 331, no. 1, pp. 281–299. https://doi.org/10.1016/s0022-2836(03)00670-3

13. Xue L. C., Rodrigues J. P., Kastritis P. L., Bonvin A. M., Vangone A. PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics, 2016, vol. 32, no. 23, pp. 3676–3678. https://doi.org/10.1093/bioinformatics/btw514

14. Bender B. J., Cisneros A., Duran A. M., Finn J. A., Fu D., Lokits A. D., Mueller B. K., Sangha A. K., Sauer M. F., Sevy A. M., Sliwoski G., Sheehan J. H., DiMaio F., Meiler J., Moretti R. Protocols for Molecular Modeling with Rosetta3 and RosettaScripts. Biochemistry, 2016, vol. 55, no. 34, pp. 4748–4763. https://doi.org/10.1021/acs.biochem.6b00444

15. Sukhwal A., Sowdhamini R. PPCheck: A Webserver for the Quantitative Analysis of Protein-Protein Interfaces and Prediction of Residue Hotspots. Bioinformatics and Biology Insights, 2015, vol. 9, pp. 141–151. https://doi.org/10.4137/bbi.s25928


Review

Views: 765


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)