Memristor structure with the effect of switching resistance based on silicon nitride thin layers
https://doi.org/10.29235/1561-8323-2020-64-4-403-410
Abstract
The electrophysical properties and the resistive switching effect of the ITO/SiNx/Si memristor structure were studied. A silicon nitride film with a thickness of ~200 nm with an inhomogeneous element depth distribution was deposited by low-pressure chemical vapor deposition. Based on the Rutherford backscattering data, it was shown that the concentration of excess silicon atoms in the SiNx film increases from 9 to 44 % when approaching the Si substrate. The analysis of the current-voltage characteristics of ITO/SiNx/Si structures revealed that the conduction mechanism in the high-resistance state is determined by the nitride film properties and is described by the Poole-Frenkel model taking into account the hopping model of electron transport between traps. Switching to the low-resistance state is probably caused by the migration of indium or tin ions from the ITO contact to the SiNx layer. The conduction of the ITO/SiNx/Si structure in the low-resistance state is determined by both the mechanisms of charge-carrier injection from the contact and charge-carrier transport through the dielectric layer. Reverse polarity results in destructing the conductive channel and switching the structure to the high-resistance state. The photo-switching effect was found for the ITO/SiNx/Si structure, which opens up new possibilities of using memristors in silicon optoelectronic systems.
About the Authors
F. F. KomarovBelarus
Komarov Fadei F. - Corresponding Member, D. Sc. (Physics and Mathematics), Head of the Laboratory, A.N. Sevchenko Institute of Applied Physical Problems.
7, Kurchatov Str., 220108, Minsk.
I. A. Romanov
Belarus
Romanov Ivan A. - Junior researcher, Belarusian State University.
5, Kurchatov Str., 220108, Minsk.
L. A. Vlasukova
Belarus
Vlasukova Liudmila A. - Ph. D. (Physics and Mathematics), Head of the Laboratory, Belarusian State University.
5, Kurchatov Str., 220108, Minsk.
I. N. Parkhomenko
Belarus
Parkhomenko Irina N. - Ph. D. (Physics and Mathematics), Leading researcher, Belarusian State University.
5, Kurchatov Str., 220108, Minsk.
A. A. Tsivako
Belarus
Tsivako Alexey A. - Production manager, Joint Stock Company “Integral”.
121A, Kazinets Str., 220108, Minsk.
N. S. Kovalchuk
Belarus
Kovalchuk Natalia S. - Ph. D. (Engineering), Deputy Chief Engineer, Joint Stock Company “Integral”.
121A, Kazinets Str., 220108, Minsk.
References
1. Chua L. O. Memristor - the missing circuit element. IEEE Transactions on Circuit Theory, 1971, vol. 18, no. 5, pp. 507-519. https://doi.org/10.1109/tct.1971.1083337
2. Strukov D. B., Snider G. S., Stewart D. R., Williams R. S. The missing memristor found. Nature, 2008, vol. 453, no. 7191, pp. 80-83. https://doi.org/10.1038/nature06932
3. Liu Y.-H., Zhan T.-C., Wang T., Tsai W.-J., Lu T.-C., Chen K.-C., Lu C.-Y. Investigation of electron and hole lateral migration in silicon nitride and data pattern effects on Vt retention loss in multilevel charge trap flash memory. IEEE Transactions on Electron Devices, 2019, vol. 66, no. 12, pp. 5155-5161. https://doi.org/10.1109/ted.2019.2949251
4. Gismatulin A. A., Gritsenko V. A., Yen T.-J., Chin A. Charge transport mechanism in SiNx-based memristor. Applied Physics Letters, 2019, vol. 115, no. 25, pp. 253502 (5 p.). https://doi.org/10.1063/1.5127039
5. Nasyrov K. A., Gritsenko V. A. Charge transport in dielectrics via tunneling between traps. Journal of Applied Physics, 2011, vol. 109, no. 9, pp. 093705 (5 p.). https://doi.org/10.1063/1.3587452
6. Jiang X., Ma Z., Yang H., Yu J., Wang W., Zhang W., Li W., Xu J., Xu L., Chen K., Huang X., Feng D. Nanocrystalline Si pathway induced unipolar resistive switching behavior from annealed Si-rich SiNx/SiNy multilayers. Journal of Applied Physics, 2014, vol. 116, no. 12, pp. 123705 (5 p.). https://doi.org/10.1063/1.4896552
7. Yen T. J., Chin A., Gritsenko V. High performance all nonmetal SiNx resistive random access memory with strong process dependence. Scientific Reports, 2020, vol. 10, no. 1, pp. 1-9. https://doi.org/10.1038/s41598-020-59838-y
8. Parkhomenko I., Vlasukova L., Komarov F., Milchanin O., Makhavikou M., Mudryi A., Zhivulko V, Zuk J., Kopycinski P, Murzalinov D. Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films. Thin Solid Films, 2017, vol. 626, pp. 70-75. https://doi.org/10.1016/j.tsf.2017.02.027
9. Anutgan T., Anutgan M., Atilgan I., Katircioglu B. Electroformed silicon nitride based light emitting memory device. Applied Physics Letters, 2017, vol. 111, no. 5, pp. 053502 (4 p.). https://doi.org/10.1063/1.4997029
10. Emboras A., Goykhman I., Desiatov B., Mazurski N., Stern L., Shappir J., Levy U. Nanoscale plasmonic memristor with optical readout functionality. Nano Letters, 2013, vol. 13, no. 12, pp. 6151-6155. https://doi.org/10.1021/nl403486x
11. Rfos C., Stegmaier M., Hosseini P., Wang D., Scherer T., Wright C. D., Bhaskaran H., Pernice W. H. P Integrated all-photonic non-volatile multi-level memory. Nature Photonics, 2015, vol. 9, no. 11, pp. 725-732. https://doi.org/10.1038/nphoton.2015.182
12. Mikhaylov A. N., Belov A. I., Guseinov D. V., Korolev D. S., Antonov I. N., Efimovykh D. V., Tikhov S. V., Kasatkin A. P., Gorshkov O. N., Tetelbaum D. I., Bobrov A. I., Malekhonova N. V., Pavlov D. A., Gryaznov E. G., Yatmanov A. P. Bipolar resistive switching and charge transport in silicon oxide memristor. Materials Science and Engineering: B, 2015, vol. 194, pp. 48-54. https://doi.org/10.1016/j.mseb.2014.12.029
13. Valov I., Kozicki M. N. Cation-based resistance change memory. Journal of Physics D: Applied Physics, 2013, vol. 46, no. 7, pp. 074005 (14 p.). https://doi.org/10.1088/0022-3727/46/7/074005
14. Boon M. R. The Poole-Frenkel pre-exponential factor. Thin Solid Films, 1972, vol. 11, no. 1, pp. 183-185. https://doi.org/10.1016/0040-6090(72)90357-4
15. Gritsenko D. V, Sha!meev S. S., Atuchin V V, Grigor'eva T. I., Pokrovskiĭ L. D., Pchelyakov O. P., Gritsenko V A., Aseev A. L., Lifshits V. G. Two-band conduction in TiO2. Physics of the Solid State, 2006, vol. 48, no. 2, pp. 224-228. https:// doi.org/10.1134/s1063783406020053